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Abstract

This paper addresses some questions in the general area of the instability of finite-dimensional elastic systems in
unilateral frictional contact with rigid obstacles. We study the occurrence of dynamic solutions in the neighborhood
of a given equilibrium state which might tend to diverge from that state. Some of the results obtained by Martins et
al. (1998) are generalized here to encompass the effects of the system nonlinear elastic behavior and of the obstacle
curvature. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

As discussed in Martins et al. (1998), no dynamic solution may be initiated at an equilibrium
configuration of a finite-dimensional scleronomic frictional contact system with a velocity discontinuity
and an impulsive reaction. This is so because the kinetic energy of the system is a positive definite
quadratic form on the system generalized velocities that already has its minimum value (zero) at the
equilibrium configuration, and all physically admissible velocity discontinuities must correspond to a
non-positive jump in kinetic energy. The questions addressed in this paper are thus the following:

(i) the occurrence of dynamic solutions initiating at an equilibrium position with no initial perturbation
but with an initial acceleration and reaction discontinuity; this is a mass and friction induced
phenomenon of non-uniqueness of dynamic solutions;

(ii) the occurrence of divergence instabilities of equilibrium states, i.e. the existence of smooth non-
oscillatory growing dynamic solutions with perturbed initial conditions arbitrarily close to an
equilibrium configuration.

In what concerns the first topic, we observe that the related problem of computing the accelerations
of a multi-degree-of-freedom system with frictional unilateral contacts has been addressed by Lotstedt
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(1981) and by Glocker and Pfeiffer (1992, 1993) in the plane case, and by Pang and Trinkle (1996) and
Trinkle et al. (1997) in the three dimensional case. The theory of linear complementarity or the theory
of quasivariational inequalities were used by those authors. Conditions for existence and uniqueness of
solution were proved by Loétstedt (1981), Pang and Trinkle (1996) and Trinkle et al. (1997).

In the present paper we concentrate on what can happen at an equilibrium configuration of the
system (its initial velocity is null): necessary and sufficient conditions are established in Section 3 for the
occurrence of dynamic solutions initiating at one such equilibrium configuration with an initial
acceleration and reaction discontinuity. These conditions can be expressed in various alternative forms,
which result from different formulations for the problem of determining, at the equilibrium
configuration, the admissible (right) accelerations and reactions of the system: inclusion and variational
statements are discussed in the present paper. An example problem from the literature, where
mathematical difficulties are known to arise due to combined effects of inertia and friction, is discussed
here having in mind these initial acceleration and reaction discontinuities.

In what concerns the second topic, we observe that studies on bifurcations and (divergence)
instabilities in continuum elastic systems with unilateral contacts were performed by Chateau and
Nguyen (1989), in the frictionless case, and by Nguyen (1990) and Chateau and Nguyen (1991), in the
frictional case; a necessary condition for the occurrence of divergence instabilities was proved in the
latter work. Klarbring (1988) analysed the stability of discrete nonlinear elastic systems with frictionless
contacts; Bjorkman (1992) studied the occurrence of bifurcation, limit and end points in quasistatic
trajectories involving also discrete nonlinear elastic systems with frictionless contacts. Mréz and Plaut
(1992) studied the stability of finite-dimensional systems with friction, but with constant normal
reactions, which makes the friction forces derivable from a potential and eliminates the non-associative
character of the most general frictional contact problems.

In Section 4 of the present paper, sufficient conditions are established for the occurrence of divergence
instabilities of equilibrium states, in finite-dimensional nonlinear elastic systems with unilateral contacts
where the non-associative friction law of Coulomb holds. Such conditions involve the current mass and
stiffness properties of the system, as well as the current normal and tangential state of the contact
candidate particles. The analysis leads to the study of dynamic stability eigenproblems for which inclusion
or variational inequality statements are given. The construction of such problems is discussed and
illustrated in two examples of small dimension where the instabilizing effects of Coulomb’s friction are
combined with those of geometric nonlinearity or of obstacle curvature. In particular, an example problem
is discussed which has the characteristic behavior of what might be called a non-associative Shanley column.

We start by introducing in Section 2 the notation and some preliminary results needed for the
development of the above topics.

2. Formulation and preliminary results
2.1. Dynamic and static contact problems with friction

We consider a plane holonomic and scleronomic finite-dimensional mechanical system whose
configuration at each time ¢ > 0 is described by the values X;(f), 1< i< N, of the independent
generalized coordinates; the corresponding column vector of the values at time ¢ of those generalized
coordinates is denoted by X(r) € RY. A finite number of particles of that mechanical system is subjected
to unilateral contact constraints with fixed curved obstacles. The set Pc C N groups the labels of the
particles (p) of those Contact candidate particles.

Each point in the plane of the system is identified by the column vector x of the components
Xy, 00 =1, 2, of its position vector in some fixed orthonormal reference frame (O, e, e,). In this paper,
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Greek subscripts (o, B, ... =1, 2) will be used always to denote the Cartesian components of vectors of
the plane of the system in the same reference frame. For each contact candidate particle p, the
corresponding obstacle is identified by the set of vectors x € R* such that

PP(x) =0, 2.1)
where the function ¢P: R*> — R is at least twice continuously differentiable and

a¢?
ox

£0 (22)

holds at the points on or sufficiently close to the obstacle. On each point of these obstacles, the unit
normal and tangent vectors are defined, respectively, by

def dpP/ox

nP(x) = |8 b ox |

——(x), t (x) (e1 x €2) x nP(x), (2.3)

and the obstacle curvature is given by

2P(x) = (X)lp(X)t (x)- 24

‘ uf“

In this formula the summation convention applies to Greek subscripts and throughout this paper it also
applies to the Latin indices 7,/, ... =1, ..., N. Note that the summation convention does not apply to
the superscript p that denotes the contact candidate particles. In view of the assumptions above, the
definition (2.3) of the orthonormal basis (nP(x), tP(x)) may be extended to all points of the plane that are
sufficiently close to the obstacle p.

The position of each particle pe Pc at each time ¢ > 0 is identified by the column vector
xP(7) = x*(X(¢)) € R?, and the column vector of the normal and tangential components of the particle
velocity is given by

iy = | WO 2 SXO g - ek 2.5)
P || GPX(r)) Bl ’ '

where the (1 x N) row matrices GP(X) and GP(X) have the components

G (X) =

GM(X) =

i=1,...,N. (2.6)

As usual, the notation (*) denotes the time derivative d( )/dz. The velocities (2.5) of the contact
candidate particles are grouped in a single column vector v(¢) of dimension 2nc x 1(nc = #Pc) and,
accordingly, the 2nc x N matrix G(X) is constructed such that

v(t) = GX(1))X(0). 2.7)

We denote by rP(¢) = [r2(1) rP(0)]" the column vector of the normal and tangential components of the
reaction force that acts at some time ¢ > 0 on the contact candidate particle p € Pc. The column vector
(of dimension 2nc x 1) that groups all the reaction vectors rP(¢) is denoted by r(z). For some contact
reactions r(¢) € R* at some configuration X(7) of the system, the vector of generalized reactions R(?) €
RY is given by
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R(t) = GT(X(1)r(z). (2.8)

Remark 2.1. Whenever confusion is not likely to arise, the functional dependence of some quantities
on the configuration X will be omitted. In particular, the matrix G(X) will be frequently denoted simply
by G, and notations of the type in (2.5), GE(X)X and GP(X)X, will be abbreviated to yﬁ(X) and yP(X),
respectively. In some circumstances, the dependency on the contact particle p will also be omitted, and
2, 17, y2(X) and 7P(X) will be denoted simply by ry, i, 7,(X) and 7,(X), respectively. O

Remark 2.2. In the following it will be frequently assumed that:
the lines of the 2nc x N matrix G are linearly independent. 2.9

In these circumstances the linear map G': R?"© — R" has a left inverse, which can be represented by the
2nc x N matrix:

G =(GGN G, (2.10)

which means that G'G™r =r for all r € R?°, and that GTG'R =R for all R € Rg(G") c R" (Lancaster
and Tismenetsky, 1985).

For each particle p € Pc, the normal and tangential reactions correspondmg to the eneralized
reaction R € Rg(G") are then obtained by r? = G:?’R and 7 =G| pR where Gh’ and G/P are the
appropriate (1 x N) row submatrices of G'. Accordingly, the column vector r is computed by

r=G'R. (2.11)

Similarly to Remark 2.1 and as done above, the X dependency will be frequently omitted from the
notation and the p dependency will also be omltted in some mrcumstances so that GTP(X)R and
G/P(X)R will be frequently denoted by 7iP(R) and 7/P(R), or simply by 7:(R) and 7/ (R), respectively. [

The mechanical system is assumed to be nonlinear elastic with a strain energy U = U(X), and is acted
upon by constant external applied forces such that Q = Q(X) is the corresponding potential energy. F(X)
is the vector of the generalized elastic forces and F*(X) is the vector of the generalized external forces:

F{(X)=—

FHX) =

i=1,...,N. (2.12)
We denote by T(X, X) the kinetic energy of the system:
. 1 ..
T(X, X) = 5M(X)X X,
where M(X) is the symmetric, positive definite mass matrix.

Along portions of the system trajectory where X(z) is twice continuously differentiable and r(z) is
continuous, the motion of the system is governed by the N Lagrange equations

M(X())X (1) + B(X(1), X(1)) = GT(X(0)r(1), (2.13)

where

B(X,X) ¥D(X, X) — FU(X) — F&(X),
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. oM 19M;
S

2 0X;

(X)}X,Xk, i,jyk=1,...,N. (2.14)

Note that the vector D(X, X) groups inertia terms quadratically dependent on the generalized velocities.
In addition, the classical unilateral contact conditions

PPX()) E gP(P(X(1))) <0, (1) <0, PXNI() =0, (2.15)

and the friction law of Coulomb

(1) € wh(Na[7P(X(1))] (2.16)

have to be satisfied for all contact candidate particles p € Pc; u = 0 is the coefficient of friction, of "]z
denotes the multi-valued application such that, for each x € R,

. dif{ x/Ix|, ifx#0, o

=11, ifx=0"

The static equilibrium of the same mechanical system for some time independent external applied
forces is a dynamic solution with null velocity and acceleration. The equilibrium is characterized by
vectors of generalized coordinates and of contact reactions, X° and r° respectively, such that the
equilibrium equations

FU(X?) + Fe(X?) + GTX)r" = 0 (2.18)
are satisfied together with the form

X <0, <0, gPXOIP =0, < —w, (2.19)
of the unilateral frictional contact conditions at each contact candidate particle p € Pc.

In what concerns the above dynamic problem, it is well known that the solutions X(z) are not in
general twice continuously differentiable functions of time. For the reasons explained in the
Introduction of this paper, we shall not discuss here the occurrence of velocity discontinuities and
impulsive reactions. In order to study in Section 3 the possible occurrence of some dynamic solutions
initiating at an equilibrium position with an initial acceleration and reaction discontinuity, we shall
characterize in Section 2.2 the sets of admissible configurations, velocities, accelerations and reactions.
In order to study in Section 4 the possible occurrence of perturbed dynamic solutions (smoothly)
diverging from equilibrium, we shall characterize in Section 2.3 the sets of admissible right velocities
and reaction rates.

2.2. Admissible configurations, velocities, accelerations and reactions
In view of the unilateral constraints (2.15);, the set of admissible configurations Kx is defined by:

Kx € {X e RY: ¢P(X) < 0, for all p e Pc}. (2.20)

For each X € Kx we introduce the following decomposition of the set Pc of contact candidate particles
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Pc = P(X) U P(X)

P(X) & {p e Pc: ¢p"(X) < 0} [particles currently not in contact (free)]

P.(X) def {p € Pc: pP(X) = 0} [particles currently in contact].
Then, for each X € Kx, we define the (configuration dependent) set of admissible reaction forces:

K.(X) def (re R?"c:

rm=r.=0,in Py
rm <0 and |r| < — ury, in PC}. (2.21)

Having in mind the unilateral constraints (2.15); and observing that, for each particle currently in
contact (p € P.(X(?)), pP(X(7)) = 0), the equality

) (2.22)

d _|0¢P
& s = 22 ex(o)

holds, we define, for each X € Kx, the (configuration dependent) set of admissible right generalized
velocities:

Ky(X) = {VeR":y.(V) <0,in P.}. (2.23)

Having now in mind (2.15), (2.16) and (2.22), we define, for each X € Kx and each V € Ky(X), the
(configuration and velocity dependent) set of admissible right reaction forces

K(X, V) = r e R
Fn <0, m7,(V) =0, in P;
ry =0, in Pg;
re € wrao[y(V)], in Pg;
re =20, in Pf};
C K(X,0) = K.(X). (2.24)
For each admissible X € Kx and each V € Ky(X) we further decompose the set P.(X) into

PC(X) = PCf(X’ V) U PCC(Xa V)a
PCC(X’ V) = PO(Xs V) U Pv(Xv V),

where

Pu(X, V)& {p e P:y(V) < 0} [particles in contact with negative normal

velocity (free in the near future)]
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Po(X, V)& {p e P:2(V)=0} [particles in contact with no normal velocity
(contact possibly preserved in the near future)]

PyX,V) &ef {p e Pe:2(V) =9P(V) =0} [particles in contact with normal and
tangential velocities equal to 0]
P,(X,V) &f {p e Pc:2(V) =7P(V) #£0} [particles in contact with vanishing normal

velocity and non-vanishing tangential velocity].
Remark 2.3. Note that in situations at which no velocity discontinuity exists, the normal velocity
YP(X(?)) is null at each particle p currently in contact, so that P(X(7), X(?)) = ¢. O

Another decomposition of the set of the particles that are currently in contact will also be useful in
the following. For each X € Kx and each r € K (X), we let

PC(X) = PZ(X’ l') U Pd(X7 I') U PS(X5 I'),

where the above disjoint subsets are

def . . . .
P,X, 1) = {p €P:rt == O} [particles in contact with zero reaction]
def . . . . .
PyX,r) = {p €P:r? < 0 and /Y] < —,urﬁ} [particles in contact with reaction strictly
inside the friction cone and consequent vanishing (right) displacement rate]
def . . . Lo
P(X,r) = {p €P:r? < 0 and |/ = —,urﬁ} [particles in contact with non-vanishing

reaction on the boundary of the friction cone
and consequent possible slip in the near future].

Observing that, for each particle currently in contact with no normal velocity [p € Pe.(X(?),

X (1), d/d1(¢P(X(1))) = 0],

2
Lo = 2 oxon o (2.25)
(0= S0 = GRXWX () + aB(X(). X (1) (226)
@0 S0 = XX+ ap(X(). X (1), (.21)
where
(X, X) = [ nP(xP(X)) - 07 (x)]X,-X, — PEX))(GPX)X) (2.28)
" 0X0X; :

(X, X) = |:tp(xP(X)). aig;’(x)}y,x, (2.29)
i9Aaj
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and, having in mind (2.15);, (2.25) and (2.26), we define, for X € Kx and V € Ky(X), the (configuration
and velocity dependent) set of admissible generalized right accelerations:

KaX, V) ={A e RV 9,(A) + @, < 0,in P }. (2.30)

On the other hand, for X € Kx, V € Ky(X) and A € Ka(X, V), we define the (configuration, velocity and
acceleration dependent) set of admissible right reactions:

K.(X,V,A) = {r e R¥c:
ra < 0 and (7,(A) 4+ @n)ry = 0, in Peg;
rn =0, 1in Py U P;
re € wrao[y(A) + a.J, in Po;
1= pryo[p(V)], in Py;
re=20,in Py U Py}

C K(X, V) C K(X). (2.31)

Then the set GT(X)K (X, V, A) of admissible generalized right reactions can be characterized in the
following manner.

Lemma 2.4. Let X € Kx, V € Ky(X) and A € Kx(X, V) and assume that (2.9) holds for the matrix
G(X). Then R € GT(X)K(X, V, A) if and only if

R-(A = A) = > wi®e[pWM (A" = A) + Y iR (Ip(A) + @ — 17(A) + @),
Py Po
VA’ € KA(X, V). (2.32)

Proof. Let R € GT(X)K.(X, V, A). Then, by (2.10),

R-(A'—A)=G"G'R- (A" —A)
=G'R.-G(A" - A)

=G'R-[(GA"+ 3)— (GA + a)]

with G'R € K.(X, V, A). But in P the following holds: y.(A) + d, <0, and y,(A")+ a, < 0, for all
A’ € Ko(X, V). Then the inequality (2.32) follows from Lemma 2.6 in Martins et al. (1988).

Let now the inequality statement (2.32) hold and let A’ — A = +a be an arbitrary element of Ker (G).
Then (2.32) implies that +R-a > 0 for all @ € Ker (G), hence R € [Ker(G)]* = Rg(GT) and, proceeding
as above, the statement (2.32) reads
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G'R-[(GA'+3) - (GA+3)] > > wiR)a[)(V)] [(yt(A’) +ay) — (p(A) + dt)]
P,
+Y @A) +a@d — [p(A) +al), VA’ € Ka(X, V),
Py

The desired result, G'R ¢ K.(X,V, A), follows then from Lemma 2.6 in Martins et al. (1998) and from
the surjectivity (2.9) of the linear map G: RY — R, O

The admissible right accelerations and reactions can be characterized in the following alternative
manner. For X € Kx, V € Ky(X) and r € K(X, V), we define the (configuration, reaction and velocity
dependent) set of admissible right accelerations

def

KaX,r, V)= {A e RV:

7a(A) + Gy <0 and (p,(A) +dyn)r, =0, in Pe;
7(A) 4+ a,=0,in Py N Py;
(7(A) + a,)afr] < 0,in Py N Py} (2.33)

Then this set admits the following variational characterization, the proof of which is given in Appendix A.

Lemma 2.5. Let X € Kx, V € Ky(X) and r € K.(X, V). Then A € Kx(X, r, V) if and only if
(GA+3)-(r'=r) > Z,ua[yt(V)](Vt(A) +a)(rs —ra) + Z,ul“/[(A) + ad(ry —r),
Py Py

vr’ € K.(K, V). 2.34) O
2.3. Admissible right velocities and reaction rates
For X € Kx and r € K(X) we define the (configuration and reaction dependent) set of admissible right
generalized velocities,

def

Kv(X,r) = {V e R":

70(V) < 0,in Py;
7,(V) =0, in Py U Pg;
o[rn(V) < 0,in Pg;
7(V) =0, in Py}
C Kv(X). (2.35)
Having in mind (2.24), the (configuration, reaction and velocity dependent) set of admissible right
reaction rates is defined by

def

Ko(X,r, V) = {w € R¥c:

wn < 0, wyp,(V) =0, in Py
w, =0, in Pg;
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o[rwe + uwn < 0 and (wo[r] + ,uwn)(a[r[]yt(V)) =0,in P;

W € ,uwna[yt(V)], in Py;

wy = 0, in Py} (2.36)
Then the set GT(X)K(X, r, V) of generalized forces corresponding to the right reaction rates admits the
following characterization.

Lemma 2.6. Let X € Kx, r € K(X) and V € Ky(X, r). Then W € GT(X)Ky (X, r, V) if and only if

WV = V) = > i W) (Ip (V)] = (V)
P

= Y i W) (17 V)l = 17V)1) = D i W)elr (n (V') = 7,(V)),
P, Py (2.37)

VV/ (S Kv(X, I‘).

Proof. This result follows from Lemma 2.7 in Martins et al. (1998) by using arguments similar to
those used in Lemma 2.4 above. O

The admissible right velocities and reaction rates can be characterized in the following alternative
manner. For each X € Kx and each r € K(X), we define the (configuration and reaction dependent) set
of admissible right reaction rates

Ko(X, 1) & {w e R¥c:

wy < 0,1in Py;
wy, =0, in Py;
Wil + uwy < 0,1in Py;
o[rwi + pwn < 0,in Pg;
wy = 0, in Py}
= Kw(X, 1, 0). (2.38)

Having then w € Ky (X, r), we define the (configuration, reaction and reaction rate dependent) set of
admissible right generalized velocities,

def

Ky(X,r,w) = {Ve RV

7a(V) < 0, wap,(V) =0, in P;;

7,(V) =0, in Py U Pg;

wey (V) < 0 and [|we| + pwy ]y, (V) =0, in P;

o[rr(V) < 0 and (a[rw: + mun)(a[rt]yt(V)) =0, in Pg;

2(V) = 0, in Py). (2.39)

This set can be characterized by the variational inequality given in the next Lemma, which is established
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essentially in the same manner as the one of Lemma 2.5.

Lemma 2.7. Let X € Kx, r € Ki(X) and w € Ky(X, r). Then V € Ky(X, r, w) if and only if

GV-(w —w) > ZMI%(V)I(WI; — W)
PC

= Zu|yt(V)|(Wé — W) — Z,uo’[rt]yt(V)(wr/1 —wn), YW € Ky(X,1). (2.40) O
P, P

3. Initial acceleration and reaction discontinuities

The initial conditions considered in this section are

X(1) = X € Kx (3.1

X (1) =0, (3.2)

where the equilibrium configuration X° corresponds to some equilibrium reactions r’ € K;(X°) such that
[recall (2.13), (2.14) and (2.18)] B(X?, 0) = —FY(X?) —F*X%) =GT(X")r’. We begin by proving in Section
3.1 some necessary conditions for the existence of dynamic solutions initiating at the equilibrium
configuration, with no initial perturbation, but with an acceleration and reaction discontinuity at the
initial time 7. In Section 3.2 a sufficient condition is presented which guarantees that, in some
circumstances, a smooth portion of a non-trivial dynamic solution actually follows that initial
discontinuity.

3.1. Necessary conditions for the occurrence of initial acceleration and reaction discontinuities
For each X € Kx and each pair (A, A’) € RY x R" we define

m* (A A) EMA-A = i (MA) (A, (3.3)
Pc

On the other hand, for each X € Kx and each pair (r, r’) € R* x R*c, we define

m(r,r') = GM™'G™r -1’ — Z,u’yt(M_lGTr)M. (3.4)
P,

Then we have the following results.

Proposition 3.1. Assume that (2.9) holds. Then a dynamic solution with initial conditions (3.1) and
(3.2) may be initiated with an acceleration discontinuity only if

JA € KA(XO, 0), A # 0, such that

MA + G’ € GTk,(X°, 0, A), (3.5)

i.e. such that
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m* (A, A') — m*(A, A) + |:r°-G(A/ —A) = S (In(A)] - Iyt(A)I)} >0,
Pe (3.6)

VA’ € KA(X°,0).

Proof. Let A € Kx(X°, 0), with A # 0, be the acceleration discontinuity. Then there must exist r* e
K.(X°, 0, A) such that

MA = GT(" — 19), (3.7)
i.e. (3.5) holds. Then inequality (3.6) follows from (2.32) and the definition (3.3) of m*. O

Corollary 3.2. Let (2.9) hold.

(1) If (3.4) holds then:
m*(A, A) < 0. (3.8)

(i1) No dynamic solution with initial conditions (3.1) and (3.2) may be initiated with an acceleration
discontinuity if

m (A" A") >0, VA’ e Ky(X°0),A" #£0. (3.9)
Proof. Since, as already mentioned, r’ € K,(X°)=K.(X’, 0, 0), it follows for Lemma 2.4 that
- GA’ > Y ullp(A)], VA’ € KA(X,0). (3.10)
P

Then, taking A" = A in (3.10) and taking successively A’ = 0 and A’ = 2A in (3.6) we get

. GA + Z,urgm(A)l <0,
7

>

m*(A,A) = -1 GA + Y urd|y(A)
PC

which imply the result (3.8). The result (3.9) follows by negation of (3.8). O

Proposition 3.3. A dynamic solution with initial conditions (3.1) and (3.2) may be initiated with an
acceleration discontinuity only if

IAr € K,(X°,0) —r°, Ar # 0, such that

M~ 'G"Ar € K5 (X%, r° + Ar, 0) (3.11)

i.e. such that
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m*(Ar, At — Ar) > 0, VAr' e K.(X°,0) —r°. (3.12)

Proof. The right reactions and accelerations satisfy r* e K;(X°, 0) and A € Ko(X°, rt,0). Then, by
Lemma 2.5 we obtain

7A)|(rr — 1), vr'e K.(X°,0).

n

GA-or'—r") > Zu
PC

However, A=M"'GT(r* — 1% #£ 0, so that r* —r’ £ 0. The result follows then by taking the arbitrary
r' € K.(X°, 0) in the form r' =1’ + Ar’ with Ar’ € K,(X°,0) — r* arbitrary, and by using the definition
(3.4) of m*. O

Corollary 3.4. (i) If (3.11) holds then:
m*(Ar, Ar) < 0. (3.13)

(i) No dynamic solution with initial conditions (3.1) and (3.2) may be initiated with an acceleration
discontinuity if

mt(w',w') >0, vw e Ky(X°,1°), w' #0. (3.14)

Proof. The inequality (3.13) follows from (3.12) by taking the arbitrary Ar’ in (3.12) to be null. On
the other hand, (3.14) follows by negation of (3.13) and by observing that K,(X°, 0) —r’ ¢ Kw(X’, r"). [

Remark 3.5. Note that, if (2.9) holds, the necessary conditions (3.5) and (3.11) for the occurrence of an
acceleration discontinuity are equivalent. This happens because (A, r’ + Ar) € Kx(X’, 0) x K(X°, 0, A) is
equivalent to (A, r’ + Ar) € Kx(X% r° + Ar, 0) x K.(X°, 0), and because (2.9) implies Ker (GT) = {0).
Consequently, from GTAr = MA, not only it follows (as used in Proposition 3.3) that A # 0 => Ar # 0,
but also that Ar 20 — A # 0. O

Propositions 3.1 and 3.3 give nothing but necessary conditions for the occurrence of initial
acceleration (and reaction) discontinuities. A sufficient condition must guarantee that these
discontinuities can actually be followed by (smooth) non-trivial dynamic solutions starting from the
equilibrium configuration. One such sufficient condition will be established next.

We assume that (2.9) holds and that for some A and Ar satisfying (3.5) and (31) with GTAr=MA # 0,
the following holds for all particles in P.(X°):

either:

7,(A) < 0 and rg + Ar, = r? + Ar, =0, [near future free] (3.15)
or:

7.(A) =0, P +Ar, <0
and

7(A) # 0 and () + Ar)o[y(A)] + u(2 + Ary) =0 [near future slip] (3.16)

or
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7(A) =0 and [/’ +Ar| < —u(r® +Ar,) [near future stick]. (3.17)

This means that the acceleration and reaction jump vectors A and Ar give an unambiguous information
on the near future states of each particle in contact at the equilibrium configuration: strictly free states if
(3.15) holds, strictly stick states if (3.16) holds, and strictly s/ip states if (3.17) holds. Assuming that such
states hold in some right neighborhood of 7, we consider the following decompositions of the reaction
vector r and of the kinematic matrix G:

Lfice Gfree G
~ Iy slip A nslip
r=|Trigyp |, T= , G=| G sip |, G = . (3.18)
p
~ Fytick A Gstick
r G

Note that the set of the free particles contains those that are already free at the equilibrium
configuration [¢(X") < 0] and those that become free in the near future (3.15). Then the equations of
motion (2.13) and the unilateral friction contact conditions (2.15) and (2.16) yield the system of
differential equations:

MX ()X (1) + B(X(0), X (1) = G L (X(0)F (1), (3.19)

together with the equality constraints:

GX())X(1) =0, (3.20)
where

AT

Gy = [G: slip + #G;Fs]ips“'li]’ GsTfick:I . (321)

Note that in the construction of the problem (3.19) and (3.20) the kinematic equality constraints
indicated in column I of Table 1 are taken into account by means of (3.20) and the equality constraints
involving the reaction forces (see column II of Table 1) are taken into account in the right-hand side of

Table 1
Contact conditions satisfied by the nonlinear system in a sufficiently small neighborhood of the equilibrium after an acceleration-
reaction discontinuity

Equality conditions Remaining inequality

imposed on the construction of conditions verified by the solution

the nonlinear equations of motion while it is valid

1 11 111 v

kinematic static kinematic static
Free m=0 ¢X) < 0

=20

Stick ¢X)=0 mo<0

7(X)=0 Il + o < 0
Slip ¢X)=0 m <0

re = oly(A)]ra =0 alnA(X) > 0




J.A.C. Martins, A. Pinto da Costa | International Journal of Solids and Structures 37 (2000) 2519-2564 2533

(3.19). In particular,
Yo siip = USsiptn stip;  Ssip = diag (ap); 0 = a[yF(A)], for each slip particle p.

Note also that the solution (X(), £(#)) to the problem (3.19) and (3.20) will be a solution to the original
problem (2.13), (2.15) and (2.16) in a time interval [z, 7+ At[ if the strict inequalities indicated in
columns IIT and IV of Table 1 are valid in ]z, T 4+ A1[ and if the accelerations X and the reactions # are
continuous functions of time in [z, T + A1][.

We now proceed to eliminate the reactions t from eqns (3.19). This can be achieved in two ways.

The first procedure starts by using the assumption that G (and consequently é) is a full rank matrix
(2.9). In these circumstances if follows from (2.13) that

¢ =1G'(MX +B), (3.22)
where, using the decomposition (3.18) of the reactions r into Iy, I g, and t,

i=[0 0 I]
is an 7 x 2nc matrix; 7 = ngp + 2ngier, Ngip and ng; being the number of s/ip and stick particles,

respectively; note that in this paper all identity matrices are denoted simply by I, independently of the
appropriate dimensions they have in each case. In this manner (3.19) becomes

[1-6i6"|[MX +B] =0, (3.23)

The kinematic constraints (3.20) are taken into account by selecting a subvector of X containing only
independent velocities. In fact, since G is a full rank matrix, a square non-singular submatrix G® of G
exists such that

GX=GX"+G"X" =0, (3.24)

where X" is an N* x 1 vector of independent velocities (N* = N — i) and X" is an 7 x 1 vector of
dependent velocities (Blajer et al., 1994; Wehage and Haug, 1982). In general this partition of the vector
X is not unique. A criterion to select a best part1t10n is given by Blajer et al. (1994). Using (3.24) to
eliminate the dependent velocities x" , the vector X is related to X by

— CTXX, (3.25)

where the N* x N matrix C is given by

c=|1 —(((;D)_I(;*)T : (3.26)
[ ]

Introducing now (3.25) in (3.19) and (Blajer et al., 1994) using the operator C to project the dynamic
eqns (3.23) on the directions of the configuration space that are tangential to the constraints, the
reduced system of nonlinear equations

M*X" +B* =0 (3.27)

is obtained, where
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M* = M*(X) = C[I - GZiG*]MCT (3.28)
and

B* = B*(X,X") = C[I—(A}ZiGT](B+MCTX*) (3.29)

are the effective mass matrix and the effective vector of nonlinear terms, both affected by the coefficient
of friction. In the sequel it will be useful to observe that

A T
G,=G'H,

where, using the decompositions (3.18) of r into Yy, It sip, In siip, aNd Fyer, and of F into ry g, and ryie,
the 2nc x 71 matrix H, is defined by

0 0
H# _ :usslip 0
1 0
0 I

The other procedure for the elimination of £ in (3.19) starts by projecting those equations on the
directions of the conﬁgurAatioEll space that are normal to the constraints, which corresponds to
premultiplying (3.19) by GM  (Lotstedt, 1982a, b; Blajer et al., 1994; Blajer, 1995; Blajer and
Markiewicz, 1995). We get

GX+GM 'B=GM G,
where, differentiating the constraints (3.20) with respect to time,

GX = -GX.
Then, if the matrix GM_IGZ is invertible, we get

P = ((A}M_I(A}D_l (6m'B-éx%), (3.30)
which is substituted in the right-hand side of (3.19) yielding:

MX +B =0, (3.31)

where

AT A —1aT\ 1A - AT A —1Aa Lo,
B=B(X X)= (I—GZ(GM '6}) &M 1)B+GZ(GM '6)) GX. (3.32)

Under the same additional assumption (2.9) of the previous procedure, the projection of (3.31) on the
directions tangential to the constraints and the consideration of the generalized independent velocities
X" results in

M*X" +B* =0 (3.33)
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with
M* = M#(X) = CMCT (3.34)

and
B = B#(X, X ") =C(1§(X, CTX*)+MCTX*). (3.35)

Notice that the latter procedure for the elimination of the reactions yields an effective mass matrix M”
(3.33) that is not affected by the friction coefficient and an effective vector of nonlinear terms that
combines the original vector B with mass and friction effects.

Existence and uniqueness of solution to the problems (3.25), (3.27), or (3.25), (3.33), both with
initial conditions (3.1), (3.2), follows from the general theory of ordinary differential equations,
provided the matrices M* or M’ are invertible and the functions M(X), B(X,X) and G(X) are
sufficiently regular. In addition, the accelerations X(7) and the reactions £(7) depend continuously on
time. Then, in view of the strict inequalities in (3.15), (3.16) and (3.17), no change in the state of any
contact candidate particle occurs in some interval Jt, v+ At[, which justifies the assumptions made
above and confirms the solution to the problem (3.19) and (3.20) as a solution to the original
problem (2.13), (2.15) and (2.16).

In this manner we have proved the following result:

Proposition 3.6. Assume that:

(1) the lines of G(X) are linearly independent (2.9);
(ii) the equivalent conditions (3.5) and (3.11) hold with GTAr=MA # 0;
(iii) for each partlcle in P, one of the three sets of conditions (3.15), (3.16) or (3.17) holds;
(iv) matrices GM GT in (3.30) and M* in (3.28) are invertible (see Lemma 3.7 below);
(v) M(X), B(X, X), G(X) and 9G(X)/9X are bounded and Lipschitz continuous in (X, X).

Then there exists a dynamic solution with an initial acceleration and reaction discontinuity followed by
a smooth dynamic solution. OJ

In relation with the above procedures for elimination of the reactions ¥ we observe the following.

Lemma 3.7. Let (2.9) hold. Then the matrix M* in (3.28) is singular if and only if the matrix (A}M_I(A}Z
in (3.30) is singular.

Proof. First we prove thdt it GM~ G is singular then M* is singular. Let GM G g £'=GM_ GTH
= 0 for some O#F # e R%. Since H, and G' are full column rank matrices, then
0#M 'G'H,i' € Ker (G). For M* to be singular

JA € Ker (G), A’ #£0: (1 - GTHHiGT>MA’ A" =0, VA" e Ker (G). (3.36)

The latter condition is fulfilled with A’ defined as M~'GTH,,#’, because G'G" =T and H,IH, = H,.

We prove now that if M* is singular then (A}Mil(A}th is singular. We assume that (3.36) holds.
Consequently

~G™H,ic'MA’ € [Ker (6)] = Rg(¢") ¢ Re(GT) (3.37)

and also 0 # MA’ € Rg(GT). The 0 % MA’' = G'r’' with 0 #r’ € R due to (2.9). From (3.37) we
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conclude that

I fice ’

GT ' siip — USsiipTy siip =G' ’
0 Yn slip
0 Ystick

for some vy, 4, and yg;. Due to (2.9),/the previous equation implies that r'fe., I/ slip — USstipTh stips Yn stip
and y,,, vanish. Hence 0 #r' = H,Ir = H,f', which implies ' # 0, since H, is a full column rank
matrix. Finally we conclude that

GM G, #' = GM 'G"H,i =0,

because M~'GTH,#'=A" € Ker (G). O

3.2. A three degree-of-freedom example of initial acceleration and reaction discontinuities

We consider a homogeneous thin rigid rod of length L and mass m with plane motion, that may
establish frictional contact with a fixed flat obstacle at the extremity A of the rod (see Fig. 1). In
absence of contact the system has three degrees of freedom; the adopted generalized coordinates are the
angle 0 between the rod and the vertical direction and the X and Y coordinates of the center of mass
CM, which are grouped in the vector X =[0 X Y]'. Constant external forces, Fy and Fy, and
moment, M., are applied at the rod center of mass. The kinematically admissible half-plane is defined
by ¢(X)=—Y + L/2cos 0 < 0.

Numerous studies have considered this or related systems. The interest has been concentrated on: (i)
the non-existence or the non-uniqueness of solution to the problem of finding the (right) accelerations
and reactions of the rod for some initial conditions involving non-vanishing velocities (Lotstedt, 1981;
Pfeiffer and Glocker, 1996; Génot and Brogliato, 1998); (ii) the occurrence of velocity discontinuities

Tz vV

Fig. 1. A thin homogeneous rod subjected to constant forces at its center of mass (CM) and frictional contact reactions at its low-
est extremity (A).
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during an impact (Jean and Moreau, 1985; Brach, 1989; Stronge, 1990; Wang and Mason, 1992; Stewart
and Trinkle, 1996); (iii) the possible occurrence of velocity discontinuities without any impact (frictional
catastrophes, Moreau, 1988) for some initial conditions that also involve a non-vanishing kinetic energy
(Mason and Wang, 1998). Our interest here is to study the occurrence of dynamic solutions initiating at
some equilibrium states of the rod with an acceleration and reaction discontinuity; vanishing initial
velocities are considered in the present study, a situation addressed also in Example 2 of Lotstedt (1981).

We consider equilibrium states such that ¢(X°)=—Y*+ L/2cos 0° =0 and r° = [P 0 =[x —1]",
with —pu < o < 0. We study separately the case of a static reaction in the interior of the friction cone
(Case 1, —u < o < 0) and the case of a non-vanishing reaction on the friction cone (Case 2, o = —p).
The analysis for 0 < o < u would be similar and it is easy to show that no initial acceleration and
reaction dlscontlnumes are poss1ble when r’ = 0 and ¢(X°) < 0. The right generalized accelerations are
denoted by 0 X and ¥ and the right normal and tangential acceleration of particle A are denoted
by af and . The jump eqns (3.5) are

2 .
mL 0 0 i N
12 -t T 0 rl -
0 o || X |=6 (x°)
m oy rr 41
0 0 m Y
where
GA %cosO 1 0
G2 L .
n ——sinf 0 -1

2

Case 1 [static reaction in the interior of the friction cone: —u < o < 0]. In this case, it is possible to
show that a reaction jump towards a contact state with non-vanishing reaction and possible slip to the

™n

-t

%+(sh9%dcos€°)sin&°<0
jump if
-13- +(sin8%+ acos 8°)sin8° <0

Fig. 2. Possible initial reaction jumps followed by smooth near future evolutions in Case 1 (static reaction in the interior of the fric-
tion cone).
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left (rF < 0 and r;” = —wr}) cannot occur. The possible cases of initial acceleration and reaction
discontinuities are discussed next (see Fig. 2).

Case 1A [jumps towards a contact state with non-vanishing reaction and possible slip to the right: af >
0, af=0,rf < 0,r=prt]. From the jump equations we obtain

i + o
o 3+
t 1
m|:3 + (sin 0° — 1 cos 00) sin 00]
and
1
=+ (sin 0° + o cos 00) sin 0°
= _f
3 + (sin 0° — 1 cos 6°) sin 6°

so that a necessary condition for such a jump is that 1/3 + (sin 0° 4 o cos 6°) sin ° < 0, which occurs
only if « < 0. Notice that this jump occurs with a reduction of the absolute values of both the
tangential and the normal reaction.

The consideration of the equations of motion for a smooth near future sliding to the right yields,
after eliminating the translational degrees-of-freedom,

IT1 .
%[5 + (sin 0 — u cos ) sin 0:|0

L.
= —%Hz(sin(?—ucos 0) cos 0 — sin 0° — & cos 0° + sin 0 — u cos 0.

Since 1/3 + (sin 0° — u cos 0°) sin 0° < 0, particle A does begin sliding towards the right. Notice that, in
this example, the matrix (A}M*IGE corresponding to strict sliding towards the right reduces to a scalar that is
equal to the product of 1/3 + (sin 8 — u cos 0) sin O by a positive constant factor. This means that all the
assumptions of Proposition 3.6 hold in this case, so that the previous conclusion that a smooth evolution
exists after the initial acceleration and reaction jump is also the result of applying that proposition.

We determine now the motion of the rod for a specific set of data suitable for the present case: L =
Lm=1,u=2X"=[0.5 0 0439]" and r* =[—1.8 —1]". Immediately after the jump the reactions
are rt =[—1.395 —0.698]" and the extremity A begins sliding towards the right with increasing contact
reactions. After some time, its horizontal velocity vanishes. At this instant, X=[0.645 0.03 0.4]", X =
[0.139 —0.056 —0.042]" and r =[—2.458 —1.229]". The analysis of the equations of motion for the
possible near future evolutions leads to the conclusion that contact is lost: a reaction jump towards the
vertex of the friction cone occurs when the horizontal velocity of particle A vanishes. A stroboscopic
representation of the motion is shown in Fig. 3.

Case 1B [jump towards a contact state with no reaction: ai < 0, rt=0]. The expression for the normal
acceleration of the contact extremity of the rod is

al = %[1 + 3(sin 0° + o cos 6°) sin 6°].

A necessary condition for such a jump is that 1/3 + (sin 0° +a cos 0°) sin 0° < 0. From the equations of
motion for a smooth evolution in the near future, we conclude that two different possibilities exist:
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0.8

7

0.2 . 06 08

Fig. 3. Stroboscopic view of the motion of the rod after an initial acceleration and reaction discontinuity towards a contact state
with non-vanishing reaction and possible slip to the right. Data: L = 1,m = 1, p = 2, X° = [0.5 0 0.439]" and r* = [—1.8 —1]".

(i) if 1/3 + (sin 0° +o cos 0°) sin @° < 0, the right normal acceleration the particle A is strictly negative
(af < 0) and the rod looses contact, a conclusion that is consistent with the result of applying
Proposition 3.6 to this case; in Fig. 4 a stroboscopic representation of the motion of the rod for a
specific set of data is presented;

(i) if 1/3 + (sin 0° + & cos 0°) sin 0° = 0, the right normal acceleration of particle A vanishes but the
lowest order derivative of the displacement of particle A along the normal to the obstacle that does
not vanish (the fourth derivative) is strictly negative if sin 20° +o cos 20° < 0 (the rod loses contact),
and strictly positive if sin 20° + o cos 26° > 0 (contact persists but with sliding towards the right);
note that Proposition 3.6 could not be applied to this case because assumption (iii) does not hold.

Case 2 [non-vanishing reaction on the friction cone: o« = —pu]. Similarly to Case 1, it can be shown that
no jump is possible towards a contact state with non-vanishing reaction and possible slip to the left
ri < 0 and rf = —urf). It can also be shown that no jump is possible towards a contact state with
non-vanishing reaction and possible slip to the right. The necessary condition for the occurrence of such
a jump is that 1/3 4 (sin 0° — g cos 60°) sin 0° = 0. But the solution of the equations of motion for a
smooth near future sliding towards the right yields indeterminacies of the type 0/0 for the tangential
acceleration of the contact particle A and for the normal reaction, as the initial time (the instant of the
possible discontinuity) is approached from the right. The evaluation of those limits with 1’Hopital’s rule
yields always a sign inconsistency for the normal reaction or for the tangential acceleration of particle
A. This example shows that the verification of the necessary condition for an acceleration jump does not
guarantee that it can actually be followed by a smooth non-trivial dynamic solution. Notice that
assumption (iv) of Proposition 3.6 does not hold in this case. The only possible case of initial
acceleration and reaction discontinuities is the following (see Fig. 5).

Case 2A [jump towards a no reaction contact state: af <0 and r" =0]. The expressions for the
normal and tangential acceleration of the contact particle A are:
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° \\\\\“ ——
]
02 09 02 A 04 06 08

Fig. 4. Stroboscopic view of the motion of the rod after an initial acceleration and reaction discontinuity towards a contact state
with no reaction, followed by loss of contact. Data: L = 1, m = 1, u = 2, X° = [0 0.439 0.5]" and r* = [-1.8 - 1]".

al = %[1 + 3(sin 0° — 1 cos 00) sin 00];

+
at

_%[ -+ 3(sin 0° — 1 cos 00) cos 00].

A necessary condition for such a jump is that 1/3 + (sin 0° — u cos 0°) sin 0° < 0. Two possibilities exist:

v
el

%— +(sin€’- pcos8)sing’Z0

Fig. 5. Possible initial reaction jumps followed by smooth near future evolutions in Case 2 (non-vanishing static reaction on the
friction cone).
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(i) if 1/3 + (sin 0° — s cos 0°) sin 0° < 0, the normal acceleration of particle A is strictly negative and the
rod looses contact: Proposition 3.6 could be applied to this case; (i) if 1/3 + (sin 0° — u cos 0°) sin 0° =0,
the right normal acceleration of particle A vanishes and assumption (iii) of Proposition 3.6 does not
hold; the lowest order derivative of the displacement of particle A along the normal to the obstacle that
does not vanish (the fourth derivative) is strictly negative if sin 20° — pcos 20° < 0 (the rod looses
contact), and strictly positive if sin 20° — u cos 20° > 0; in the latter case the above right acceleration at
would be positive but the required normal reaction would be also positive, so that a smooth near future
sliding towards the right is not possible (assumption (iv) of Proposition 3.6 does not hold).

4. Divergence of smooth dynamic solutions with perturbed initial conditions

We discuss now the existence of smooth dynamic solutions (X(¢), r(¢)) to the nonlinear system (2.13)
starting from (perturbed) initial conditions arbitrarily close to an equilibrium state (X%, r°) and diverging
from that equilibrium state. Liapunov’s linearization method is used for that purpose: the stability of
the actual nonlinear system is studied by analysing the behavior of the directionally linearized system in
the neighborhood of the static equilibrium configuration. In particular, we will show in Proposition 4.4
that, under certain conditions, a solution to the nonlinear system for an initial perturbation along a
direction that corresponds to a divergent solution of the linearized system, is also divergent.

Throughout this section we assume that

M(X), B(X, X), G(X) and 3G(X)/3X are continuously differentiable
in the neighborhood of (X, X) = (XO, 0). 4.1)

4.1. The directionally linearized problem

In the neighborhood of the equilibrium state, and for admissible directions of the increments of the
generalized coordinates and the contact reactions

0X(1) € Ky(X°, 1), or(r) € Ku(X, 10, 0X(1)), (4.2)
the equations of motion (2.13) have the following linearized form
MX)5X (1) + K(X, r°)6X(¢) = GT(X)or(z), (4.3)

where the N x N tangent stiffness matrix K(X’, r’) is the sum of contributions from the deformation
energy, the potential energy of the external forces and the contact related nonlinearities, respectively:

K(X, r°) = KV(X®) + KX + KE(X, 1), (4.4)
where, fori,j=1, ..., N,

92U

Fo 20
I (x0y = 98 (x0y
IXi0X,

3X; IX,0X;

KY(X0) = —ﬁ(XO) = x%), KX =-—
U an ’ /)

9%x
K500.) ==X (s 2028 = 6 )| “3)

c
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The latter contribution to the tangent stiffness matrix and the right-hand side of (4.3) result both from
the linearization of the generalized reactions R(X, r)=GT(X)r:

OR(X?, r%) = 6GT(Xr" + GT(X")or

= —K(X?, r°)oX + GT(X")or. (4.6)

From (4.5) it is clear that the first contribution to the matrix K¢ has the character of a geometric
stiffness matrix and the second contribution results from the obstacle curvature. This latter contribution
may be nonsymmetric only if tangential reactions exist on the contact. Note that the nonlinear inertia
terms D in (2.13) and (2.14) have no contribution to the linearized equations at (X, X) = (X’, 0), since
they are quadratic functions of the generalized velocities.

4.2. Instability of the directionally linearized dynamic problem

For ¢t > © we consider perturbed dynamic solutions of the linearized system (4.3) in the form

0X(t) = a(2)V, or(t) = p(t)w, 4.7)
where
Veky(X%r?) and we Ky (X% 1, V) (4.8)

define constant directions in the sets of right admissible displacement and reaction increments; the
function of time « is twice continuously differentiable and o and & are non-negative and non-decreasing;
the function f is continuous, non-negative and non-decreasing in the same interval; the initial values
a(t) = 0 and a(t) = 0 are arbitrarily small.

For each (V, V') € RY x R" we continue to use the notation (3.3) and we define:

a(V.V)EKV-V = 3 il (KV) (V). (4.9)
PC

For given V € R and each (w, w’') € R¥ x R* we also define

v

it (w, w’) LM GTW—KV) - w — Z,u|yt(M_l(GTw - KV))|wr/1. (4.10)
P

Note that, for V = 0, the latter definition reduces to the definition (3.4) of m"(w, w’).

Proposition 4.1. Let (2.9) hold. Then

342 >0andV € KV(XO, rO), V £ 0, such that

(PM+K)V e G'K,, (X, 1%, V) .11
i.e., such that

2[m*(V, V') = m*(V, V)] + [a*(V, V') —=a*(V, V)] = 0, ¥V e Ky(X°, 1), (4.12)
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if and only if the linearized system (4.3) admits a solution of the form (4.7) and (4.8) with
w=G(>M +K)V (4.13)

and

o(t)cosh [}n(t - ‘c)] + [chf)] sinh [i(t — ‘c)] if A>0

a(t)+a(t)(t—1) if 2=0.

p(t) =a(t) = (4.14)

In these circumstances, the equilibrium state (X°, r°) of the linearized system is dynamically unstable by
divergence.

Proof. The equivalence between (4.11) and (4.12) results from the characterization (2.37) of the set
G'K.(X°, r°, V). The sufficiency of (4.11) is obtained by direct substitution of (4.7), (4.13) and (4.14) in
(4.3). The necessity part of the proof follows the same arguments of Propositions 3.7 and 3.9 in Martins
et al. (1998). O

An alternative formulation for the above cigenproblem can be given. With that purpose, we consider
first the following auxiliary problem.
Given V € RY, find wy € K (X’, r°) such that

M~ (G"wy —KV) € Ky (X%, 1%, w), (4.15)
i.e., such that
mit(wy, w' —wy) =0, vw' e K, (X%, 1). (4.16)

If (2.9) holds and the coefficient of friction is sufficiently small, it is possible to show that, for
each given V € R", there is a unique solution wy to the problem (4.15) and (4.16); the proof can be done by
using arguments of the type used by Klarbring (1990b) in a related problem; see also Cocu (1990). In these
circumstances, we denote by #: RV: — K,,(X°, r) the map that assigns to each V € R" the unique solution
wy to the problem (4.15) and (4.16). Then we construct the nonlinear equality eigenproblem

MV +KV — G"# (V) =0, 4.17)

and we have the following result.

Proposition 4.2. Assume that (2.9) holds and that the problem (4.15) and (4.16) has a unique solution. If
there exists V € RY, V # 0, such that (4.17) holds, with /4 > 0, then the linearized system (4.3) admits a
solution of the form (4.7) and (4.8) with w = #7(V) and « and f given by (4.14),. The same conclusion
holds, with o and f given by (4.14),, if (4.17) is satisfied with A = 0 and 0 # V € Ky(X°, r’, w).

Proof. From (4.17) and (4.15), it is clear that

W (V) € Ky(X°, 1°)

2V =MYG"# (V) —KV) € Ky(X°, r°, #(V)), (4.18)
from which it follows, if 4 > 0, that V € Ky(X°, r°, #°(V)). Hence (4.11) holds.
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If 2=0,VeKyX° r’, #(V)) has to be imposed independently since it does not necessarily follow
from (4.18). ]

The above conditions for divergence instability lead to the resolution of a set of classical generalized
linear eigenproblems, together with the verification of some inequalities. These various linear
eigenproblems are obtained by considering all possible combinations of near future states of the contact
candidate particles; actually, since the particles in P¢(X°) (currently free) and in Py(X°, 1) (currently
stick) will remain so in the near future, only the combinations of possible near future states of the
particles in P,(X°, r’) and P,(X°, r°) need to be considered.

The possible near future evolutions for the particles in P,(X°, r’) and Py(X’, r’) are summarized in
Table 2.

The total number of classical generalized linear eigenproblems that may be constructed in this manner
is 4" x 2™ (n, =#P,, ny=#P;), because a contact particle in P, has four possible near future evolutions
(zf, zd, zs+ and zs—) and a particle in Ps has two possible near future evolutions (sd and ss). Assuming
now that one combination of the above near future evolutions holds, and taking into account all the
equality conditions in columns I and II of Table 2, the inclusion eigenproblem (4.11) becomes the
following constrained linear eigenproblem on the unknowns (12, V, W)

(PM+K)V =G, W (4.19)

Gv=o, (4.20)

followed by the verification that the solution vectors (V, w) satisfy the inequalities in columns III and
IV of Table 2. The decompositions used in (3.18) are used in (4.19) and (4.20) for the vector w and the
matrix G. Notice that here we have

Table 2
Conditions on V and w corresponding to every possible near future evolution of a contact particle that belongs to set P, or P in
the static equilibrium state

Equality conditions Remaining inequality
imposed on the construction of conditions to be verified
the linear eigenproblem by the solution
1 11 111 v
kinematic static kinematic static
P, zf wy, =0 (V) <0
we =0
zd 1a(V)=0 wp <0
7 (V) =0 il + o < 0
s+ p(V)=0 Wi — vy =0 WV) =0 W < 0
= 7(V)=0 Wi oy = 0 WV) <0 Wa < 0
P sd 1a(V)=0
n(¥V)=0 o[+ pwn < 0

ss 7.(V) =0 we + o[r0]pw, =0 oy (V) <0
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Wd
Wr
Wiiee = =0, Wyick = | Wu |,
Wt
Wsd
Wizs+ Whzs+
Wi stip = | Wizs— = :usslipwn stips  Wn slip = | Wnzs—
W[SS WHSS
with
+1, inzs—+,
Ssip = diag(ap), op =1 —1. inzs—, (4.21)

—o[r?], inss.

The elimination of the reaction rates w from (4.19) follows the same steps of the procedures used in
Section 3 for the elimination of the reactions t from (3.19). An independent set of generalized velocities
V* is chosen such that V = CTV*,

For the first procedure, the elimination of the reactions and the projection of the equations on the
directions tangential to the constraints yield the reduced eigensystem

(22M* + K*)V* = 0, (4.22)
where M* is again given by (3.28) and, similarly,
K* = C[I - (A}ZiGT]KCT. (4.23)

These effective mass and stiffness matrices are both affected by the friction coefficient and they are in
general non-symmetric. These matrices M* and K* coincide with their homologous in Martins et al.
(1998), when the case of a linear elastic system and a flat obstacle is considered, the normal and
tangential displacements of the contact candidate particles are used as generalized coordinates (G is a
Boolean matrix), and only near future evolutions zf and ss are considered for al/l the contact particles in
P, and P, respectively. The first reaction rates are given by

w = G'(2’M + K)CTv* (4.24)
The second procedure yields the eigensystem
(M +K¥)V* =0, (4.25)
with M” given again by (3.34) and
K* = C|:I - éZ(GMIGZ)_IGMI]KCT. (4.26)
The first reaction rates are given by

A AT\ A 1
w:H#(GM ¢)) GM'KCTV 4.27)
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As observed earlier, this second procedure can be applied if matrix GM G is non-singular. The
invertibility of matrices GM~ ‘GT and M* is related by Lemma 3.8.

In the next proposition we summdrlze the equivalence between the results of Propositions 4.1 and 4.2
and those that can be obtained from the previous sets of linear eigenproblems of the form (4.22) or (4.25).

Proposition 4.3. Let the assumptions of Proposition 4.1 [or of Proposition 4.2] hold. The statements
(4.11) and (4.12) [or (4.17)] hold for some admissible V # 0 and some A > 0 if and only if some of the
linear eigenproblems (4.21) [or (4.25)] is solved by the same value of / and some V* # 0, with V = CTV*,
and the inequalities in columns III and IV of Table 2 are satisfied by that vector V and the corresponding
w given by (4.24) [or by (4.27)]. O

4.3. Divergence instability of an equilibrium state of the original nonlinear system

Under some additional conditions we can conclude that the equilibrium state of the given nonlinear
system is also unstable by divergence.

Proposition 4.4. Assume that:

(i) the lines of G(X) are lineraly independent (2.9);

(ii) the equivalent conditions (4.11) and (4.12) in Proposition 4.1 hold for a real strictly positive 4, and,
for the corresponding linear eigenproblem (4.22), all other A are non-positive real numbers;

(iii) at all the particles in P, and P;, the inequalities in columns IIT and IV in Table 2 are satisfied in the
strict sense by the vectors V and w in (4.11) and (4.13);

(iv) the matrices GM~- lGT in (4.26) and M* in (4.22) are invertible;

(v) M%X) B(X, X), G(X) and dG(X)/0X are continuously differentiable in the neighborhood of (X, X) =
(X%, 0) (4.1).

Then the equilibrium state of the actual nonlinear system corresponding to X° and r’ is dynamically
unstable (a divergence instability).

Sketch of the proof. A sufficiently small initial perturbation to the equilibrium state of the nonlinear
system is given,

X(t) € Kx, X(1)=X’+ar)V+X,
X(1) € Kv(X(1)), X(1)=o(1)AV+V,
1(X,. V,) I < C2@IIV, V)2 (4.28)

where C > 0, «(t) > 0 and, using assumption (ii), 4 > 0 and V are a solution to (4.11) and (4.12). Note
that, due to the possible curvature of the obstacle, the perturbation given to the nonlinear system cannot
in general coincide with the perturbation a(z)(V, V) of the linearized system: this is the reason for the
need to introduce the correcting terms (X, V,) in (4.28). The perturbed states of the contact candidate
particles correspond to the strictly free, sliding or stick behaviors determined by the directions V and w
obtained from (4.11) and (4.13) under the assumption (iii). More specifically we have: qﬁp(X(f)) < 0, at
all the free particles, with VE(X(‘E)) < 0 at the zf particles; ¢P(X(z)) = yﬁ(X(r)) =0and op); P(X (7)) > 0, at
the slip particles (recall (4.21)); and xP(X(1)) — x*(X°) = GP(X(1))X (1) = 0 at the stick particles. Due to
the assumed smoothness of the obstacles, the correcting terms (X,, V,) can be chosen with an order of
magnitude of o?(7).

On the other hand, assumption (iv) guarantees that it is possible to eliminate the reactions and write
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both the nonlinear and the linearized equations of motion only in terms of the kinematic varibles X(¢)
and X(7) (see Appendix B). The system of nonlinear ordinary differential equations obtained after
elimination of the reactions has a unique solution and the reactions are continuous functions of time, as
a consequence of (iv) and (v) [Lotstedt, 1981; Lotstedt, 1982a; Vidyasagar, 1993).

But assumption (ii) implies that the coefficient matrix of the linearized system has a strictly positive
eigenvalue (the value 4 > 0 in (4.28) and in Proposition 4.1). Consequently, it is possible to show (using
assumption (v), see Appendix B) that the solution of the nonlinear system with the initial conditions
(4.28) grows exponentially. Finally, the conclusion that the equilibrium state is unstable follows by
showing (also in Appendix B) that the perturbed solution (X(?), r(¢)) leaves the neighborhood of the
equilibrium state before it reaches the boundary of the admissible region of the configuration-reaction
space where it is valid. O

4.4. Hlustrative examples of small dimension

Example A. The effect of obstacle curvature on (smooth) divergence. We consider the 2 d.o.f. system
represented in Fig. 6, which is a modified version of the one presented by Klarbring (1990a). It consists
of a particle of mass m restrained by a system of linear springs. The reference position of the particle
corresponds to its equilibrium under no external forces (undeformed springs). The generalized
coordinates are the components of the particle displacement u = [u; u>]" measured from that reference
state in the fixed orthonormal reference frame whose origin coincides with that reference position. The
2 x 2 elastic stiffness matrix KY has diagonal elements K;; and K>, and non-diagonal components
Ky = Ky

The main modification relatively to the system discussed in Klarbring (1990a) is the curvature of the
obstacle y = 1/R where R is the radius of curvature. The equilibrium state studied hereafter results from
the application of an additional constant force f° to the particle m such that r? = w?: a situation of
impending sliding towards the right. In this case G(u’) = [1 0] and G,(u’) = [0 1]. The sets of admissible

Fig. 6. Modified form of Klarbring’s example (Klarbring, 1990a) involving a curved obstacle.
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right velocities and right reaction rates are

Ky’ r°) = {(V1, V2): V2 =0,V = 0}

Ky, r’, V) = {we wa): — Wi+ pwy < 0, (= wi+ pwy) V1 =0}

For this example, eqn (4.22) gives

K —f—g K
MR n=p 12 |4} Wi
2l + . 1, 1=
m 2 Wn
K12+ﬂ?2 K>

where the tangent stiffness matrix was constructed as indicated in (4.23). Using the fact that J, =0 and
we = uwy, the previous system reduces to

(=}

-0
(izm—i- <K11 — ukyy — (1 +M2)%>)V1 =0,

the single equation that corresponds to (4.22). When K;; — uKj» — (1 + )/ 3/R < 0 we conclude from
Proposition 4.4 that the system is unstable by divergence. When the obstacle curvature vanishes the last
equation yields the well-known result for the original example of Klarbring (flat obstacle). From the
previous equation we conclude that, as expected, the convexity of the obstacle (y = +1/R > 0) facilitates
instability.

Example B. A non-associative Shanley column. This example deals with a column having elastic
supports that are connected to frictional sliders, as represented in Fig. 7. It is a modified version of
another example presented by Klarbring (1998). The model consists of a rigid homogeneous bar AB of
length L and mass M rigidly connected at point B to a rigid massless bar orthogonal to AB. Point B
has no horizontal displacement. The column is supported by four springs of stiffness K each. The rigid
bars are connected with the four vertical springs by frictionless sliders £ and F. These four springs
remain vertical. The particles C and D of mass M, are attached to the upper extremities of the upper
vertical springs and may establish unilateral frictional contact with horizontal obstacles. The coefficient
of friction is u. Particles C and D are also attached to horizontal springs of stiffness K. The initial
distance of the vertical springs to the axis of symmetry is L. A vertical downward prescribed
displacement U, is applied to both the horizontal obstacles: U, is measured from the equilibrium
position of the particles C and D when they are acted only by gravity. The extremities of the horizontal
springs opposite to particles C and D have both an initial horizontal prescribed displacement U}, which
corresponds to an initial compression of those springs.

This mechanical system has six degrees-of-freedom. We choose as generalized coordinates the vertical
displacement (6) of point B, the angle (0) between bar AB and the vertical and the horizontal (u€, uP)
and vertical (1S, u?) components of the displacements of particles C and D. The displacements are
measured from the reference configuration that coincides with the symmetric equilibrium configuration
of the system under the simultaneous action of gravity and vertical prescribed displacements (U,). X =
[6 0 uS uP uC uP]T is the vector of non-dimensional generalized coordinates. The generalized coordinates
with dimension of length are non-dimensionalized by multiplying them by the factor 1/L. The non-
dimensional prescribed displacements are i, = Uy/L and i, = Up/L. The non-dimensional external

c D ,.C D

force P and the non-dimensional reaction forces r=(ry;, r), ry’, 1) are obtained from the dimensional

ones by multiplication by the factor 1/KL. Time is non-dimensionalized by multiplication by the factor
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Fig. 7. A column with frictional-contact supports leading to bifurcations from stable configurations of the fundamental trajectory
involving sliding of one or both unilateral contacts.

K/M. The horizontal prescribed displacements u, have the upper bound puu,/2, so as to keep the
reference equilibrium reactions at C and D inside the friction cone.
In this particular example the complete (non-dimensional) Jacobian matrix G and the left inverse G'

of GT are equal:

Gh=Gg= n

oS o o O

0
0
0
0

0
1
0
0

S o o =

0
0
1
0

-_ o O O

The fundamental trajectory of the system is

P
0= 0=u
5:;; 0=u
P
525, 020,

_.D_ . C
—un—ut —l/l
D
:unzo,
cC_,D__
un_un_

=0, for P €0, Pa[,

_ P
tc=l7h—g<“v_§)’ for P € [Pa, Pg|
uPz_utC:ﬁh, fOl‘PZPBy
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where Pa = 2(uy — 2un/p) is the (non-dimensional) load at which impending slip of the particles C and
D is first attained, and Pg = 2u, is the value of the vertical load for which the reactions at C and D
vanish. For a graphical representation of the fundamental trajectory see Fig. 8.

For the set of non-dimensional generalized coordinates defined above the mass and stiffness matrices
are

M= diag(l, %, m, m, m, m)

and
4 0 1 1 0 0]
P P
1 I—uP 1 0 0 0
K=|1 —(-uP) 0 1 0 0
P
0 3 0 0 1 0
P
— 1
_0 3 0 0 0 .

for a generic equilibrium state (X, r’) on the fundamental trajectory. The non-dimensional parameters
that govern the behavior of the system are m = My/M, [ = Ly/L, w = Mg/(2KL) as well as u,, uy and p
defined before. In this study we denote by a and b the following non-dimensional quantities evaluated
along the fundamental trajectory: a = a(uP, P) = 4( — uP)> —w — P, b = b(uP, P) = P/2 + u(l — uP).

ﬁnP AP
Pg
PA 0
5_ Et
Ty | Gn |Gy ah
2 | n |2
67 €:=0
_ u({? =—u2
Un
v Ll?

Fig. 8. Orthogonal projections in space (P, ,uP) of the fundamental trajectory of the system of Fig. 7. Note that for P > Py, u$ =
D _
uy =—P/2.
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For the given particular type of loading, we wish to determine the quasistatic paths that may bifurcate
from the fundamental path and to study the dynamic stability of the fundamental equilibrium states. At
some equilibrium state on the fundamental path and for a given load rate, the existence of other
quasistatic paths is studied by determining the kinematically admissible displacement rates and the
admissible reaction rates (4.8) for which the rate form of the equilibrium eqns (2.18) is satisfied (see
Klarbring, 1990a; Nguyen, 1994). The divergence instability of the equilibrium states is studied with the
theory presented in Section 4 (Proposition 4.4): the effective mass and stiffness matrices (3.28) and (4.23)
are calculated, the linear eigenproblems of the type (4.22) are solved, and the strict inequalities referred
in (iii) of Proposition 4.4 are checked.

Bifurcations from the fundamental path

At a generic equilibrium state (X°,r’) along the fundamental trajectory, the rate form of the
equilibrium equations is

KV =eP + G'w,

where

v=[v, v, ¥S ¥P v pP]le ky(XO, 1),
W= [WC wP o wC ol ] € Ky ( 0 V)
—(32Q/9XaP)X) =[1 0 0 0 0 o]

denote the vectors of non-dimensional displacement rates, reaction rates and relative magnitudes of the
generalized applied force rates, respectively; P is the load rate. We consider the following kinds of
equilibrium states, for which the admissible sets of right velocities and right reaction rates are presented.

1. reactions at C and D are strictly inside the friction cone (0 < P < Pj)
Kv(XO, ) ={veR: VS =rP=pC=rC=0}
Ky(X%, 0, V) = R*
2. both particles are in a state of impending slip (P < P < Pg)
Ky(X%, ") ={veR: VS =rP=0,7C <0,V >0}
KW(XO, 1'0, V) = {W e R* wc + ,uwg <0, (w + pwy ) =0
—w +,uw <0 (— wy + uw, )VD = 0}

3. both particles are in a state of geometric contact without reaction (P = Pg)

Kv(X0, 1) ={VeRrR: VS <0, VP <o}
KW(XO, rO, V) {w e R w C <0, w, VC =0, |wc| — uwf
D < 0,wP VY =0, wll < —pwy}:

4. both particles are out of contact (P > Pg)
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KV(XOa ro) = R6
Ko(X°, 1%, V) = {0} c R*.

It is convenient to define the three external loads corresponding to the following conditions involving
the quantities a and b:

P = P, when a = bP holds;
P = P, when a = bP/2 holds, and
P = P3;whena=0.

Different kinds of response may occur for different values of the non-dimensional governing parameters.
The bifurcation diagram depends qualitatively on the relative position of the two sets of loads P, Pg and
Py, Py, P3. In this paper we only consider the case for which the governing parameters are such that
Py < P, < P3 < Pg. A complete study of this example can be found in Martins and Costa (1998). In
the case studied here (and for the particular type of loading considered) the only bifurcations from the
fundamental path occur for P € [Py, Pg[. Table 3 summarizes the relevant information for the quasistatic
evolutions involving rotation of bar AB that branch from the fundamental path. The near future frictional
contact states of the two particles C and D are indicated by the use of the words FREE, SLIP or STICK:
for instance, a near future evolution involving sliding of C and stiction of D is indicated by SLIP-STICK,
whilst STICK—-SLIP indicates that C will be stuck and D will be sliding in the near future (the same rule
applies for other combinations of states). Table 3 contains, for each case of near future evolution in the
range P € [Pa, Pg[, the active generalized velocities, the effective stiffness matrices, the conditions on the
data resulting from the constraints in Kv(X’, r’) and K(X°, r°, V) and the near future (rate) solutions. The
conditions on the data are written in terms of the quantities ¢ and » and also in terms of the loads
Py, P, P; (between square brackets).

In Table 3 it can be seen that the fundamental path has bifurcations for a load rate P > 0 in the
following ranges: [P, Ps], if P; > Pa; or [Pa, Py, if P; < Pa. If P > P4 the problem in the first rates
indicates a bifurcation into SLIP-SLIP solutions at P;: the problem in the first rates has infinitely many
SLIP-SLIP solutions which are represented in Fig. 9 by a fan. For P; > Pa there exists a continuous
range of bifurcation points into a STICK—SLIP or a SLIP-STICK solution with P > 0. The upper load of
this segment is P,. The secondary paths for that load begin with P = 0 (Fig. 10). For P €]P», P3[, the
bifurcations into STICK—SLIP or SLIP-STICK happen with a load decrease (P < 0) (Fig. 10). Above P;
and below Pp there are no secondary branches from the fundamental path. Table 3 shows only the
STICK-SLIP case because the SLIP-STICK solutions are symmetric of the STICK—-SLIP solutions. The
problem in the first rates gives also a STICK-STICK kind of solution with P < 0 at P3 (see Table 3).
That problem has infinitely many solutions, i.e., at the point of the fundamental trajectory where a = 0
there is a fan of first rate solutions leading to STICK-STICK frictional contact states (see Fig. 11).

An observation of utmost importance is that when the coefficient matrix K* is singular or when a first
rate solution gives ambiguous information on the near future state of some contact particle (at least one
inequality in Table 2 does not hold in the strict sense), the first rate solution may not be continued by a
solution of the same type of the original nonlinear problem. The (higher-order) post-buckling analysis that
is needed in these circumstances falls outside the scope of this paper. The above observation is particularly
relevant for the cases in which the first rate problem gives a fan of solutions: in the related problem of the
(associated) Shanley column (Shanley, 1947) the problem in the first rates also gives fans of solutions
(Petryk, 1993) which however cannot all be continued in the post-buckling range (Hutchinson, 1974;
Needleman and Tvergaard, 1982; Bazant and Cedolin, 1991).
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Active generalized velocities, effective stiffness matrices, conditions on the data and the solutions of the problem in the first rates
that involve escape from the fundamental trajectory involving rotation of bar AB for P € [Pa, Pg]-a = a(uP, P) = 4(/— u{))2 -
w=P. b =bp, P)=(P/2) + p(l — u), u? =itn — (u/Dlits — (P/2)]

Cases v* K* Conditions on the data Solution
. P
Vo= Bl4;V,= (ﬁ—— VP)/b; ve=v2=0;
Vs 4 0o 0 0
Ve P P V< = yP _E.
VlC 0 a ) t t 5
SLIP- s
D a=bP[P=P)]and P>0 5
SLIP Vi pw b 10 yP e]o,ﬁzf[arbitrary;
—-u b 0 1
IK*| = 4(a—bP) Wy = Vs+(—u)Wows = Vs—(I—ud)Ve;
wp = —pwg; Wl = pwp
. —uPP
, V= Bl Vo =——s VE = VP = Ve =0;
0<a<b5[P2<P<P3] S(a—bi)
and P< 0 P
Vs 4 0 0 yp ___Ha .~
Vo P or 4(a—b5>
TICK- 0 a 3 P
:LIP 144 2 bi <a<bP[P, < P< P, p
-u b 1 . WE=V5+(1—“P)V92WF=EV0§ we = Vs—(I—u)Ve;
p and P >0
|K*| =4<a—b5> wP = uwd
Vs = 0; Vy < Oarbitrary; VS = VP = VC = 0;
sLp apao LTI
=h— = P,] an = P
a=bzlP=hl WE = A=) Vi =2 Vi
wp = —(I=uP)Vo; wP = pwy
R 17 . P
Vs = Pl4; Vye |:4b , 4b:|arbltrary,
STICK: Vé] |:4 0] S
N RZ 0 = = 5
STICK [} a a=0[P=Pland P<O0 WE = Vst (—uP)Vy:

|K¥| = 4a

wo = Vs—(—ud)Ve;

P
C V,: D Vv,
Wy = 05 Wt [

2 2
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AP

Fig. 9. Fan of rate solutions leading to SLIP-SLIP frictional contact states (P = P;). The qualitative rate solutions are represented
in the (P, 0) space.

Divergence instability of the equilibrium states on the fundamental path
1.0 < P < PA

In this case the eigenproblem (4.22) has the form

2
240 v, 0
) = .
0 %—i—a Vo 0

Since a vanishes only for P = P; > P4, all the eigenvalues /1 are pure imaginary: no purely elastic
instability occurs in this load range.

4 P
17
to to
stick-slip

———~ | slip-stick
=
P1

M

0] e
Fig. 10. Rate solutions leading to STICK—SLIP or SLIP-STICK frictional contact states (case P» < P; < P, < P; < Pp).
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Fig. 11. Fan of rate solutions leading to a STICK-STICK frictional contact state (P = Pj3).

2.PA<P<PB

For the SLIP-SLIP case the eigenproblem (4.22) becomes

(244 0 0
12
A P
0 ?—f—a 5
U b 2Pm+1
| —nu b 0

and the characteristic equation is

2

0 Vs

T || |-

0 Ve
2m+1 e

(22 +4) (22m + 1)[0— + a)uzm +1) - bP} =0.

3

oS o o O

2555

A sufficient condition for the above equation to have a positive real root is that a—bP < 0 which is
equivalent to det (K*) < 0 for the K* matrix of the SLIP-SLIP case. However, the eigenvector V
must satisfy V¢ = VP, which is not compatible with the assumed orientations of slip for the particles
C and D. Consequently, in this case, the occurrence of divergence instabilities of the type (4.7) is

excluded for the linearized system.

For the STICK-SLIP case the eigenproblem to solve is

2 +4 0 0
)2
A P
0 ? +a E
—u b 2Pm+1

The corresponding characteristic equation is
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(22 +4)[<i32 +a>(/12m+ 1) —bg] ~0.

A necessary and sufficient condition for the existence of one positive A is that ¢ — b(P/2) < 0 which
is equivalent to det (K*) < 0 for the K* matrix of this STICK—SLIP case. Since a — bP/2 > 0 for
P < P,, then divergence instability of the type (4.7) is excluded for the linearized system in the
continuous range of bifurcation points [P, P;[. Divergence instability for the case STICK-SLIP may
occur for P > P,: for the actual nonlinear system the equilibrium states of the fundamental trajectory
corresponding to P € [P,, Pg[ are unstable by divergence. These conclusions are also valid for the
SLIP-STICK case.

We explore now the possibility of occurrence of a purely elastic instability, i.e. involving stiction of
both particles C and D. The eigensystem (4.22) is the same presented for the case 0 < P < P,. The
reaction rates are obtained from (4.24),

[ ((—uP)V ]
wC
" —(l — uP) Vg
wD p
o N L
wp P
L 3

which would lead to reactions at one of the particles outside the friction cone: a purely elastic
instability for P € [P4, Pg] is not possible.

3. P=Pg
A complete analytical study of the dynamic stability of the fundamental equilibrium state
corresponding to P = Py is not done here because it would involve too lengthy computations. A
numerical study that includes this case is presented below.

4. P > PB
This case reduces to the study of an elastic stability eigenproblem for a 6 degree-of-freedom system
without unilateral contact and friction, with M* =M and K* =K. Since a vanishes for some
P € [Py, Pg[, then a < 0 for P > Pg which implies det (K) < 0 (see Martins and Costa, 1998). Then
the fundamental equilibrium states for P > Py are unstable.

A numerical study

We consider the following non-dimensional parameters: p=0.2,/=1.0,u,=2.0,u,=0.1,
w=0.2, m = 1. Particles C and D reach the state of impending slip for P, =2 and, following the
fundamental path, their reactions vanish for Pg =4. For P € [Py, P>[=(2,2.23572[ the fundamental
path has a continuous range of bifurcation points to secondary paths with STICK-SLIP and SLIP-
STICK frictional contact states (see Table 3) and increasing load P. For P = P, =2.23572, the
bifurcation to the above secondary paths occurs for constant external load. The fundamental
equilibrium states between P, and Py are unstable by divergence. Since in this example the parameter a
vanishes for P = P; = 3.29774 €]P,, Pg[, then there is a range of external loads (P €]P;, Pg[)
corresponding to unstable equilibrium states of the fundamental trajectory for which there are no
branching to non-symmetric quasistatic secondary paths, for the particular type of loading considered
here. The unstable dynamic solutions correspond to STICK-SLIP or SLIP-STICK near future
frictional contact states. For the chosen non-dimensional parameters and for the equilibrium state of
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geometric contact with vanishing reactions (P = Pg = 4) there are no secondary quasistatic equilibrium
paths emanating from it, for the particular type of loading considered. Moreover, the equilibrium state
for P = Pg =4 is unstable by divergence with modes involving FREE-SLIP or SLIP-FREE near future
frictional contact states. For P > 4 all the fundamental equilibrium states are unstable since det (K*) <
0 (a pure elastic instability).

5. Summary and conclusions

This paper deals with the instability of equilibrium states of mechanical systems in frictional contact
with rigid obstacles. We consider systems with a finite number of degrees-of-freedom, elastic
nonlinearities and curved obstacles. Two types of instabilities are addressed: a non-smooth type
associated with the lack of uniqueness of the accelerations at the equilibrium state, and a smooth type
associated with the non-oscillatory growth of arbitrarily small perturbations to the equilibrium state.
The same types of instability were considered earlier by Martins et al. (1998) but for linear elastic
systems and flat obstacles.

The occurrence of a non-smooth instability (with no initial perturbation) depends on the verification
of the following: the necessary conditions for an initial acceleration and reaction discontinuity are
satisfied (Propositions 3.1 and 3.3), some regularity assumptions hold, as well as some conditions on the
direction of the acceleration and reaction discontinuity (Proposition 3.6).

The study of the smooth divergence instability of a nonlinear system yields an inclusion or variational
inequality eigenproblem (Proposition 4.1) (see also Martins and Costa, 1996; Martins et al., 1998). The
resolution of one such inclusion eigenproblem is equivalent to the resolution of a set of linear
eigenproblems, each of them corresponding to a directional linearization of the original nonlinear
system, together with the verification of some inequalities. For the nonlinear system to be unstable it is
sufficient that: one of the admissible linearizations of the system corresponds to an unstable equilibrium,
some regularity assumptions are valid and some conditions hold on the direction of the displacement
and reaction increments that correspond to the linearized unstable solution (Proposition 4.4).

In the instabilities discussed in the present paper, the conditions posed on the escape directions (the
initial acceleration and reaction discontinuity in Proposition 3.6 and the displacement and reaction
increments in Proposition 4.4) are such that it is possible to guarantee the existence of a smooth near
future solution to the original nonlinear dynamic problem: those directions give an unambiguous
information on that near future evolution, i.e. they point towards the interior of an admissible region of
smooth behavior of the system, and there the effective mass matrix of the system is non-singular. The
well-known fact that smooth dynamic solutions to frictional contact problems (continuous velocities,
accelerations and reactions) may fail to exist in general circumstances is the main reason for the above
restrictions on the sufficient conditions given in Propositions 3.6 and 4.4.

Finally we observe that, as a result of the nature of the mathematical tools used in this work, and also in
some relation with the restrictions mentioned above, the main limitation to the instability analyses
discussed in this paper is that they do not consider escape solutions that might involve an infinite number
of transitions between different frictional contact states in the neighborhood of the equilibrium state.

Appendix A

Proof of Lemma 2.5. First we prove that A € Kx(X, r, V) implies (2.34). In fact, it is easy to see that
the inequality
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(GA+a)-(' =) = ) (&) +a) (1 — )
=

holds, because r, =r/=rm=r=0 in Py, p,(A)+dy=0 in PN (PqUPs), and because y,(A) +
dn < 0,r,=0and r, <0 in P, U P,. The inequality (2.34) follows then by observing that

inPy: rl—r= ,ua[yt(V)](rr’1 — rn);
inPyN Py p(A)+a,=0;
inPyNP,: (p(A)+a)(r —r)= @A) +a)r = — @A) +allrl
> uly(A) +ai(ry —r);
in Py N Pg: (yl(A) + dt)(rt’ —r) = —Iy(A) + &[|J[r[](r[/ — rt)
= Ip(A) 4+ ad(— Il + 1) = plp(A) +ad(r, — ra).
We prove now that (2.34) implies A € Ka(X, r, V). The proof of the properties of y,(A)+ain Py N Py

is trivial. In order to prove that y,(A)+a, < 0 and (y,(A)+dy)rm =0in Py, we let r, —ry =1/ —r =0 for
all particles different from some particle p in that set. For that particle we get from (2.24) and (2.34)

m <0, re=prno[p(V)],
and

(&) + @) (1] — 1) + (A @) (7] — 1) = o[ V] (A + @) (7 — 1)
for all (r,, r/) such that r;, < 0 and r{ = pr, o[y (V)]. Consequently,

(7a(A) + a@n)(ry — ra) = 0, for all r, <0,

which implies the desired result. In order to prove the same result [y, (A)+a, < 0and (y,(A)+ay)ry, = 0]
in Py, we let r, —r,=r/ —r, =0 for all particles different from some particle p in that set. For that
particle we get from (2.24) and (2.34)

<0, [rn] < —pr,
and
(A + @) (] = ) + (&) + a@n) (1] = 1) = plyp(A) +a@d (r, — ).
for all (r, r/) such that r; < 0 and |r/| < — wr;. Consequently, we have again
(7a(A) +dn) (ry — o) = (&) + @i (ry = 1) — (W(A) + @) (r{ = 1)
> ulyp(A) + ad(r) —ra) — (n(A) + a)r, + uly(A) + ary
= pulp(A) + adry — (7(A) + ar
=0, forall r; <0,

because either y(A)+a,=0or y(A)+a, # 0 and, for each r; < 0, r/ can be chosen with the value r/ =
uoly(A)+ar;, for which |uo[y(A)+a]r;| = |r/| < — wr;. Finally, the proof that y(A)+a,=—[y(A)+
aofr] in PyN Py is done by letting r, —ry = r/ —r =0 in (2.34) for all particles, except for r/ —r of
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some particle p in Py N Ps. For that particle we get from (2.34)
("/t(A) + &t)("{ - "t) = ("/[(A) + le)a[rt](a[rt]rt’ — |rt|) >0,

for all r/ such that [cf. (2.24)] |r/| < — pr] = —wry = |r|. The desired result follows from the fact that
olrdr{ —Ir{l < Ird —Irl < 0. O

Appendix B

Mathematical details of the Proof of Proposition 4.4. The only combinations of near future states that
are relevant for the study of the instability of the nonlinear system are those corresponding to the
instability of the linearized system, i.e. those that satisfy the assumptions (ii) and (iii) of Proposition 4.4.
In the sequel, we use for the reaction vector r and for the kinematic matrix G the same partitions that
are indicated in (3.18). In other words, a solution of the nonlinear system (3.19) and (3.20) is sought
such that the conditions in Table 1, with y,(A) replaced by 7,(V), hold (compare also with Table 2 and
recall the related nomenclature).

Since, by assumption (iv), the matrix (A}Mfl(A}T is regular in the neighborhood of the equilibrium
position, then, in the admissible region of smooth behavior determined by the vectors V and w in (4.11)
and (4.13), the nonlinear equations of motion (2.13) can be written as a system of 2N first-order
ordinary differential equations on y() = [yl () y3(n " =[X(®) —X)" XT()]"

y1(0) y,(?)
N B ’ B.1
|:Y2(t):| |:_M_1B(Y1(l), Y2(f)):| (B.1)

while the inequalities in columns IIT and IV of Table 1 hold in the strict sense (with y,(A) replaced by
7:(V)). B is given by (3.32) and the reactions are obtained by

a o AT\ a - 2
w0 =00 =H,(6M'6]) (6M'B-6y,). (B.2)
On the other hand, the linearization (4.3) of the equations of motion in the same admissible region, i.e.

the linearized form of (B.1), can be written as an homogeneous system of 2N first-order ordinary
differential equations

y(1) = Ay(1), (B.3)
where
0 I
A= S B (B.4)
M“[G:(GM '6)) Gm —I}K 0
x°)
and the corresponding reaction increments Jr(¢) are given by
A —IAT\ A -1
or() =H,(6M'G) GM Ky, (). (B.5)

The nonlinear system (B.1) may be written in the equivalent forms
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V(O =Ay()+Y(y(1) e RN, 1>, (B.6)

or

2(t) =Jz(0) + Z(z(t)) e R?N, 1> 1, (B.7)

where A is the constant 2N x 2N real matrix in (4.32), J is the real Jordan decomposition of matrix
A, Y(0)=Z(0)=0, Z(z) =S~ 'Y(y) and y = Sz, with S a regular transformation matrix with real entries.
Moreover, Y(y) and Z(z) are bounded and at least locally Lipschitz continuous in the neighborhood of
y = 0 or z = 0, due to the general assumption (4.1). In addition,

YW _ I1Z@)| _ 0
llyll lzl—0 |z]]

llyll—0 (B-8)

In the present case the real Jordan decomposition of A has the form

A0 0 - 0
0 -4 0 A 0
J = 5
0 0 C3)
0 0 C(A)

where I denotes the total number of independent eigenvectors of A and, for i > 3,

0 Im (4;) T
—Im (4;) 0
Y 0 0 Im (4;)
C(4) = 0 Y ~Im (4;) 0
Y 0 0 Im(4;)
0 Y —Im(y;) 0

The elements y may be taken as strictly positive and their magnitude can be controlled by an adequate
choice of the transformation matrix S (Horn and Johnson, 1985; Coddington and Levinson, 1955;
Cronin, 1980; Liitkepohl, 1996). The system (B.7) is of the type

21(0) = Az1() + Zi(2(1))

22(1) = —Az(1) + Z(2(1))

Zok41(0) = Im (Ay2) 2261 (1) + g1 2251 () + Zogey1 (2(1))
Zok2(t) = —Im (Zpi2)Zon42(1) 4 V2412226 (0) + Zoesa(2(0))

where 75,1 and y,,,, are 0 or y > 0, and the index k =1, ..., N —1 is not summed. The essence of the
proof lies in the time differentiation of a weighted sum of the quantities
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2N
R(1) =210 () =) |z
i=2
in the neighborhood of the trivial solution (Amann, 1990; Coddington and Levinson, 1955; Cronin,
1980; Verhulst, 1980). From (B.8) we have that
Ve>0 36>0: Vi=1,...,2N:|z|| < 6= |Zi(z)| < ¢lz]. (B.9)

For b? > 0, it follows from (B.9) that the following inequality holds:
1d 2N
Ve>0 30>0: |z()| <= E$(R2 b)) = (A —y—e)lz(D))? — bz(y + £)Z|z[(l)|2.
i=2

Choosing y and ¢ such that y + ¢ € [0, 1/2], then
>0 |z(0)] <= %%(RZ —2P)1t) = (v + &) (R* = B*r2)().

For b > 0 and for o(t) sufficiently small, there is always an ¢*> > 0 such that, for the initial conditions
(4.28), (R* — b*r?)(1) = a*. Let y; (1) = a(t)(V, AV) be the initial perturbation to the linearized system
along the direction (V, AV) in the phase space associated with the positive eigenvalue A > 0, and let
y, (1) =(X,,V,) be the correction to y;(r) due to the curvature of the obstacle. From (4.28)
ly,(0)ll < Ca(x)*|IV, AV||* and, since z= Sy, then |z,i(t)] < C'a(x)’ for i=1, ...,2N and some C’ > 0.
Note that the only non-vanishing component of z;(t) is the one related with A, i.e. z (7). Using the
above estimates and letting z(t) = z;.(t) + z,(t), the condition (R* — »*?)(z) > 0 is satisfied if

(1)1 = Cra(t) — B Cro® (1)) > 0,

where C; and C, are positive constants that depend on the matrix S. The above inequality is satisfied
for a(t) < (—Ci+(C244b>Cy)"?) /(20> Cy).

Taking initial conditions z(t) = S™'y(t) such that |z(z)| < & and (R> — b*?)(1) = a* > 0, we get, by
Gronwall’s inequality (Amann, 1990),

Izl < 0=(R* = b*r*)(1) = (R* — b*r*)(x) exp [2(y + &)t — 1)] = (R* — b*r)(7). (B.10)
From (B.10) and from the fact that
Iz = (R + 7)) = (R — p22)(2), (B.11)

we conclude that the solution z(z) leaves the neighborhood § of the trivial solution, no matter how small
the perturbation z(7) is.

Besides, from (B.10) and (B.11) we may extract additional information on the evolution of the
perturbed solutions. Notice that

(R = p*r*)(z) > 0 (B.12)
is equivalent to

Z-Z < <1~|—%>(z~ez)2, (B.13)

where e,=(1,0, ...,0) = S_lyL(r)/HS_lyL(r)H defines the direction in the z phase space that corresponds
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to the ecigenvector of the coefficient matrix of the linearized system associated with the positive
eigenvalue 1 > 0. By means of the transformation z = Sy, the inequality (B.13) also corresponds to the
interior of a convex cone that encloses y; (t) = a(7)(V, AV) in the y phase space:

1 2
STsly.y < (l—i—ﬁ)(STSly-ey) (B.14)

where ey, = Se, has length one in the norm induced by S~TS~!. The nature of the spectrum of A (recall
assumption (ii) in Proposition 4.4) guarantees that this cone does not contain any eigenvector associated
with any other eigenvalue with positive real part. The aperture of the cones defined by (B.13) and (B.14)
decreases when larger values of b*> are considered. Moreover,

(R? = p*r?)(t) = (R* = b*r)(z) = & (B.15)

defines escape regions in the interior of those cones. The regions mentioned above have a
simple representation in the (R, r) space (see Fig. 12). Region E is bounded by the hyperbola
(R? — b*?)(t) = a*> which is interior to the conic region defined by (R? — b*r?*)(¢) = 0. According to
(B.10) and (B.11) it is clear that every solution to the system (B.1) with an initial condition
simultaneously inside the J-neighborhood of the trivial solution z(z) = 0 and inside the region E will
leave the d-neighborhood before leaving the region E. Since matrix S represents a non-singular linear
and real transformation between y and z, what was said about the qualitative evolution of the solutions
in terms of the z coordinates can be easily adapted with minor changes to the y coordinates (the actual
phase-space coordinates). The §-neighborhood of z(r) = 0 corresponds also to a (convex) neighborhood
U of y(t) = 0 (Hadley, 1980). By choosing ¢ and a(r) sufficiently small and a sufficiently large 5°, the
apertures of (B.13) and (B.14) are small enough that (X(¢), X (7)) remains in the interior of the admissible
region of smooth behavior of the system before crossing the border of U.

To conclude the proof of instability of the system we need to show that the reactions also remain in
the interior of the corresponding admissible region of smooth behavior while the phase space trajectory
is inside the neighborhood U. If we denote p = (r —r’, i) where r is given by (B.2) and F can be

1('/{///{//%

2

( Region E)

NON-LINEAR

Fig. 12. Qualitative evolution in the space (R, r) of the representative point of a solution of (B.7) (or (B.6)) for a perturbation
from equilibrium state given by (4.28).
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computed by differentiating (B.2) and using (B.1), we may write

p=LSz+F(z) (B.16)
where
A — ~ _1 A —
H(6M'G,) 6M 'K 0
L=
~ — ~ _1 ~ —
0 H(6M'G,) 6M K

The mapping LS of the linear part of (B.16) leads to a cone in the p space that encloses (w, Aw), where
w is the reaction rate vector of the linearized system corresponding to the positive real eigenvalue A.
Considering the linear part of (B.16) we have z = (LS)'p, where (LS)": Rg(LS)— [Ker(LS)* = Rg((LS)")
represents a right inverse of LS (Lancaster and Tismenetsky, 1985). Then we get from (B.13) that

2
@M asipp < (145 ) (@) asto-e,) (B.17)

where e, = LSe, is the unit vector along the direction of (w, iw) (for the norm induced in Rg(LS)) by
(LSHT(LS)"). The previous inequality defines a cone enclosing e,. The inner product induced by
(LSHT(LS)' in Rg(LS) is used in (B.17). Notice that (LS))'(LS)'p-p =1z-z > 0 for every p € Rg(LS)
and that 0 = (LS))(LS)'p - p = z-z implies 0 = z € [Ker(LS)]* and p = LSz = 0. Due to the presence
of higher-order terms F(z) in (B.16), the image in the p space of the phase space cones (B.13) and (B.14)
is not the cone (B.17) but it differs from (B.17) by second-order terms. By choosing § and o(r)
sufficiently small and b? sufficiently large, then for z in the J-neighborhood, the region in the p space
approximated by (B.17) will be strictly inside the admissible region of smooth behavior of the system. In
other words, while the variables of the y phase space are in the neighborhood U, the strict inequalities
in columns III and IV of Table 1 (with y,(A) replaced by y,(V)) hold. This shows the validity of the
equations of motion of the system at least until it leaves the neighborhood U of equilibrium.
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