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Abstract

This paper addresses some questions in the general area of the instability of ®nite-dimensional elastic systems in

unilateral frictional contact with rigid obstacles. We study the occurrence of dynamic solutions in the neighborhood

of a given equilibrium state which might tend to diverge from that state. Some of the results obtained by Martins et

al. (1998) are generalized here to encompass the e�ects of the system nonlinear elastic behavior and of the obstacle

curvature. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

As discussed in Martins et al. (1998), no dynamic solution may be initiated at an equilibrium

con®guration of a ®nite-dimensional scleronomic frictional contact system with a velocity discontinuity

and an impulsive reaction. This is so because the kinetic energy of the system is a positive de®nite

quadratic form on the system generalized velocities that already has its minimum value (zero) at the

equilibrium con®guration, and all physically admissible velocity discontinuities must correspond to a

non-positive jump in kinetic energy. The questions addressed in this paper are thus the following:

(i) the occurrence of dynamic solutions initiating at an equilibrium position with no initial perturbation

but with an initial acceleration and reaction discontinuity; this is a mass and friction induced

phenomenon of non-uniqueness of dynamic solutions;

(ii) the occurrence of divergence instabilities of equilibrium states, i.e. the existence of smooth non-

oscillatory growing dynamic solutions with perturbed initial conditions arbitrarily close to an

equilibrium con®guration.

In what concerns the ®rst topic, we observe that the related problem of computing the accelerations

of a multi-degree-of-freedom system with frictional unilateral contacts has been addressed by LoÈ tstedt
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(1981) and by Glocker and Pfei�er (1992, 1993) in the plane case, and by Pang and Trinkle (1996) and

Trinkle et al. (1997) in the three dimensional case. The theory of linear complementarity or the theory

of quasivariational inequalities were used by those authors. Conditions for existence and uniqueness of

solution were proved by LoÈ tstedt (1981), Pang and Trinkle (1996) and Trinkle et al. (1997).

In the present paper we concentrate on what can happen at an equilibrium con®guration of the

system (its initial velocity is null): necessary and su�cient conditions are established in Section 3 for the

occurrence of dynamic solutions initiating at one such equilibrium con®guration with an initial

acceleration and reaction discontinuity. These conditions can be expressed in various alternative forms,

which result from di�erent formulations for the problem of determining, at the equilibrium

con®guration, the admissible (right) accelerations and reactions of the system: inclusion and variational

statements are discussed in the present paper. An example problem from the literature, where

mathematical di�culties are known to arise due to combined e�ects of inertia and friction, is discussed

here having in mind these initial acceleration and reaction discontinuities.

In what concerns the second topic, we observe that studies on bifurcations and (divergence)

instabilities in continuum elastic systems with unilateral contacts were performed by Chateau and

Nguyen (1989), in the frictionless case, and by Nguyen (1990) and Chateau and Nguyen (1991), in the

frictional case; a necessary condition for the occurrence of divergence instabilities was proved in the

latter work. Klarbring (1988) analysed the stability of discrete nonlinear elastic systems with frictionless

contacts; BjoÈ rkman (1992) studied the occurrence of bifurcation, limit and end points in quasistatic

trajectories involving also discrete nonlinear elastic systems with frictionless contacts. MroÂ z and Plaut

(1992) studied the stability of ®nite-dimensional systems with friction, but with constant normal

reactions, which makes the friction forces derivable from a potential and eliminates the non-associative

character of the most general frictional contact problems.

In Section 4 of the present paper, su�cient conditions are established for the occurrence of divergence

instabilities of equilibrium states, in ®nite-dimensional nonlinear elastic systems with unilateral contacts

where the non-associative friction law of Coulomb holds. Such conditions involve the current mass and

sti�ness properties of the system, as well as the current normal and tangential state of the contact

candidate particles. The analysis leads to the study of dynamic stability eigenproblems for which inclusion

or variational inequality statements are given. The construction of such problems is discussed and

illustrated in two examples of small dimension where the instabilizing e�ects of Coulomb's friction are

combined with those of geometric nonlinearity or of obstacle curvature. In particular, an example problem

is discussed which has the characteristic behavior of what might be called a non-associative Shanley column.

We start by introducing in Section 2 the notation and some preliminary results needed for the

development of the above topics.

2. Formulation and preliminary results

2.1. Dynamic and static contact problems with friction

We consider a plane holonomic and scleronomic ®nite-dimensional mechanical system whose

con®guration at each time te 0 is described by the values Xi�t�, 1E iE N, of the independent

generalized coordinates; the corresponding column vector of the values at time t of those generalized

coordinates is denoted by X�t� 2 RN. A ®nite number of particles of that mechanical system is subjected

to unilateral contact constraints with ®xed curved obstacles. The set PC � N groups the labels of the

particles (p) of those Contact candidate particles.

Each point in the plane of the system is identi®ed by the column vector x of the components

xa, a � 1, 2, of its position vector in some ®xed orthonormal reference frame (O, e1, e2). In this paper,
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Greek subscripts (a, b, . . . � 1, 2) will be used always to denote the Cartesian components of vectors of

the plane of the system in the same reference frame. For each contact candidate particle p, the

corresponding obstacle is identi®ed by the set of vectors x 2 R2 such that

jp�x� � 0, �2:1�
where the function jp: R2

4R is at least twice continuously di�erentiable and����@jp

@x

���� 6� 0 �2:2�

holds at the points on or su�ciently close to the obstacle. On each point of these obstacles, the unit

normal and tangent vectors are de®ned, respectively, by

np�x� �def @jp=@x��@jp=@x
���x�, tp�x� �def �e1 � e2� � np�x�, �2:3�

and the obstacle curvature is given by

wp�x� � ÿ 1����@jp

@x
�x�

����
@2jp

@xa @xb

�x�tpa�x�tpb�x�: �2:4�

In this formula the summation convention applies to Greek subscripts and throughout this paper it also

applies to the Latin indices i, j, . . . � 1, . . . , N. Note that the summation convention does not apply to

the superscript p that denotes the contact candidate particles. In view of the assumptions above, the

de®nition (2.3) of the orthonormal basis (np�x�, tp�x�) may be extended to all points of the plane that are

su�ciently close to the obstacle p.

The position of each particle p 2 PC at each time te 0 is identi®ed by the column vector

xp�t� � xp�X�t�� 2 R2, and the column vector of the normal and tangential components of the particle

velocity is given by

vp�t� �
"
vpn�t�
v
p
t �t�

#
�
"
Gp

n�X�t��
G

p
t �X�t��

#
_X �t� � Gp�X�t�� ÇX �t�, �2:5�

where the (1�N) row matrices Gp
n�X� and Gt

p(X) have the components

G
p
ni
�X� � np�xp�X�� � @x

p

@Xi

�X�, G
p
ti
�X� � tp�xp�X�� � @x

p

@Xi

�X�, i � 1, . . . , N: �2:6�

As usual, the notation ( .) denotes the time derivative d( )/dt. The velocities (2.5) of the contact

candidate particles are grouped in a single column vector v(t ) of dimension 2nC � 1�nC � #PC� and,
accordingly, the 2nC �N matrix G(X) is constructed such that

v�t� � G�X�t�� ÇX �t�: �2:7�
We denote by rp�t� � �rpn�t� r

p
t �t��T the column vector of the normal and tangential components of the

reaction force that acts at some time te 0 on the contact candidate particle p 2 PC. The column vector

(of dimension 2nC � 1) that groups all the reaction vectors rp�t� is denoted by r(t ). For some contact

reactions r�t� 2 R2nC at some con®guration X(t ) of the system, the vector of generalized reactions R�t� 2
R
N is given by
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R�t� � GT�X�t��r�t�: �2:8�

Remark 2.1. Whenever confusion is not likely to arise, the functional dependence of some quantities

on the con®guration X will be omitted. In particular, the matrix G(X) will be frequently denoted simply

by G, and notations of the type in (2.5), Gp
n�X� ÇX and G

p
t �X� ÇX , will be abbreviated to gpn� ÇX � and g

p
t � ÇX �,

respectively. In some circumstances, the dependency on the contact particle p will also be omitted, and

rpn, r
p
t , g

p
n� ÇX � and g

p
t � ÇX � will be denoted simply by rn, rt, gn� ÇX � and gt� ÇX �, respectively. q

Remark 2.2. In the following it will be frequently assumed that:

the lines of the 2nC �N matrix G are linearly independent: �2:9�
In these circumstances the linear map GT: R2nC

4 R
N has a left inverse, which can be represented by the

2nC �N matrix:

G � �GGT �ÿ1G, �2:10�
which means that G GTr � r for all r 2 R2nC , and that GTG R � R for all R 2 Rg�GT� � RN (Lancaster

and Tismenetsky, 1985).

For each particle p 2 PC, the normal and tangential reactions corresponding to the generalized

reaction R 2 Rg�GT� are then obtained by rpn � G p
n R and r

p
t � G

p
t R, where G p

n and G
p

t are the

appropriate (1�N) row submatrices of G . Accordingly, the column vector r is computed by

r � G R: �2:11�
Similarly to Remark 2.1 and as done above, the X dependency will be frequently omitted from the

notation and the p dependency will also be omitted in some circumstances, so that G p
n �X�R and

G
p
t �X�R will be frequently denoted by g

p
n �R� and g

p
t �R�, or simply by gn�R� and gt �R�, respectively. q

The mechanical system is assumed to be nonlinear elastic with a strain energy U = U(X), and is acted

upon by constant external applied forces such that O � O�X� is the corresponding potential energy. FU(X)
is the vector of the generalized elastic forces and FO(X) is the vector of the generalized external forces:

F U
i
�X� � ÿ @U

@Xi

�X�, F O

i
�X� � ÿ @O

@Xi

�X�, i � 1, . . . , N: �2:12�

We denote by T(X, ÇX ) the kinetic energy of the system:

T
ÿ
X, ÇX

�
� 1

2
M�X� ÇX � ÇX ,

where M(X) is the symmetric, positive de®nite mass matrix.

Along portions of the system trajectory where X(t ) is twice continuously di�erentiable and r(t ) is

continuous, the motion of the system is governed by the N Lagrange equations

M�X�t�� ÈX �t� � B
ÿ
X�t�, ÇX �t�

�
� GT�X�t��r�t�, �2:13�

where

B
ÿ
X, ÇX

�
�def D

ÿ
X, ÇX

�
ÿ FU�X� ÿ FO�X�,

$

$ $

$ $ $ $

$

$

$

$ $ $ $ $
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Di

ÿ
X, ÇX

�
�def
�
@Mij

@Xk

�X� ÿ 1

2

@Mjk

@Xi

�X�
�
ÇX j
ÇX k, i, j, k � 1, . . . , N: �2:14�

Note that the vector D(X, ÇX ) groups inertia terms quadratically dependent on the generalized velocities.

In addition, the classical unilateral contact conditions

fp�X�t�� �def jp�xp�X�t���E 0, rpn�t�E 0, fp�X�t��rpn�t� � 0, �2:15�

and the friction law of Coulomb

r
p
t �t� 2 mrpn�t�s

�
g
p
t

ÿ
ÇX �t�

��
�2:16�

have to be satis®ed for all contact candidate particles p 2 PC; me 0 is the coe�cient of friction, s� : �z
denotes the multi-valued application such that, for each x 2 R,

s�x� �def
(

x=jxj, if x 6� 0,

� ÿ 1,1�, if x � 0
: �2:17�

The static equilibrium of the same mechanical system for some time independent external applied

forces is a dynamic solution with null velocity and acceleration. The equilibrium is characterized by

vectors of generalized coordinates and of contact reactions, X0 and r0, respectively, such that the

equilibrium equations

FU�X0� � FO�X0� �GT�X0�r0 � 0 �2:18�

are satis®ed together with the form

fp�X0�E 0, r0pn E 0, fp�X0�r0pn � 0, jr0pt jE ÿ mr0pn , �2:19�

of the unilateral frictional contact conditions at each contact candidate particle p 2 PC.

In what concerns the above dynamic problem, it is well known that the solutions X(t ) are not in

general twice continuously di�erentiable functions of time. For the reasons explained in the

Introduction of this paper, we shall not discuss here the occurrence of velocity discontinuities and

impulsive reactions. In order to study in Section 3 the possible occurrence of some dynamic solutions

initiating at an equilibrium position with an initial acceleration and reaction discontinuity, we shall

characterize in Section 2.2 the sets of admissible con®gurations, velocities, accelerations and reactions.

In order to study in Section 4 the possible occurrence of perturbed dynamic solutions (smoothly)

diverging from equilibrium, we shall characterize in Section 2.3 the sets of admissible right velocities

and reaction rates.

2.2. Admissible con®gurations, velocities, accelerations and reactions

In view of the unilateral constraints (2.15)1, the set of admissible con®gurations KX is de®ned by:

KX �def
�
X 2 RN: fp�X�E 0, for all p 2 PC

	
: �2:20�

For each X 2 KX we introduce the following decomposition of the set PC of contact candidate particles

J.A.C. Martins, A. Pinto da Costa / International Journal of Solids and Structures 37 (2000) 2519±2564 2523



PC � Pf�X� [ Pc�X�

Pf�X� �def
�
p 2 PC: f

p�X� < 0
	

�particles currently not in contact �free��

Pc�X� �def
�
p 2 PC: f

p�X� � 0
	

�particles currently in contact�:

Then, for each X 2 KX, we de®ne the (con®guration dependent) set of admissible reaction forces:

Kr�X� �def fr 2 R2nC :

rn � rt � 0, in Pf ;

rn E 0 and jrtjE ÿ mrn, in Pcg: �2:21�

Having in mind the unilateral constraints (2.15)1 and observing that, for each particle currently in

contact �p 2 Pc�X�t��, fp�X�t�� � 0�, the equality

d

dt
fp�X�t�� �

����@jp

@x
�xp�X�t���

����vpn�t� �2:22�

holds, we de®ne, for each X 2 KX, the (con®guration dependent) set of admissible right generalized

velocities:

KV�X� �
�
V 2 RN: gn�V�E 0, in Pc

	
: �2:23�

Having now in mind (2.15), (2.16) and (2.22), we de®ne, for each X 2 KX and each V 2 KV�X�, the
(con®guration and velocity dependent) set of admissible right reaction forces

Kr�X, V� � fr 2 R2nC :

rnE 0, rngn�V� � 0, in Pc;

rn � 0, in Pf ;

rt 2 mrns
�
gt�V�

�
, in Pc;

rt � 0, in Pfg;

� Kr�X, 0� � Kr�X�: �2:24�
For each admissible X 2 KX and each V 2 KV�X� we further decompose the set Pc�X� into

Pc�X� � Pcf�X, V� [ Pcc�X, V�,
Pcc�X, V� � P0�X, V� [ Pv�X, V�,

where

Pcf�X, V� �def
�
p 2 Pc: g

p
n
�V� < 0

	 �particles in contact with negative normal

velocity �free in the near future��
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Pcc�X, V� �def
�
p 2 Pc: g

p
n
�V� � 0

	 �particles in contact with no normal velocity

�contact possibly preserved in the near future��

P0�X, V� �def
�
p 2 Pc: g

p
n
�V� � g

p
t �V� � 0

	 �particles in contact with normal and

tangential velocities equal to 0�

Pv�X, V� �def
�
p 2 Pc: g

p
n
�V� � g

p
t �V� 6� 0

	 �particles in contact with vanishing normal

velocity and non-vanishing tangential velocity�:

Remark 2.3. Note that in situations at which no velocity discontinuity exists, the normal velocity

gpn� ÇX �t�� is null at each particle p currently in contact, so that Pcf�X�t�, ÇX �t�� � f. q

Another decomposition of the set of the particles that are currently in contact will also be useful in

the following. For each X 2 KX and each r 2 Kr�X�, we let
Pc�X� � Pz�X, r� [ Pd�X, r� [ Ps�X, r�,

where the above disjoint subsets are

Pz�X, r� �def
�
p 2 Pc: r

p
n � r

p
t � 0

	 �particles in contact with zero reaction�

Pd�X, r� �def
�
p 2 Pc: r

p
n < 0 and jrpt j < ÿmrpn

	 �particles in contact with reaction strictly
inside the friction cone and consequent vanishing �right� displacement rate�

Ps�X, r� �def
�
p 2 Pc: r

p
n < 0 and jrpt j � ÿmrpn

	 �particles in contact with non-vanishing
reaction on the boundary of the friction cone

and consequent possible slip in the near future�:
Observing that, for each particle currently in contact with no normal velocity [p 2 Pcc�X�t�,

ÇX �t��, d=dt�fp�X�t��� � 0],

d2

dt2
fp�X�t�� �

����@jp

@x
�xp�X�t���

����apn�t� �2:25�

apn�t� �
def d

dt
vpn�t� � Gp

n�X�t�� ÈX �t� � ~ap
n

ÿ
X�t�, ÇX �t�

�
�2:26�

a
p
t �t� �def

d

dt
v
p
t �t� � G

p
t �X�t�� ÈX �t� � ~ap

t

ÿ
X�t�, ÇX �t�

�
, �2:27�

where

~ap
n

ÿ
X, ÇX

�
�
"
np�xp�X�� � @2xp

@Xi@Xj

�X�
#

_Xi
_Xj ÿ wp�xp�X��

ÿ
G

p
t �X� ÇX

�2 �2:28�

~ap
t

ÿ
X, ÇX

�
�
"
tp�xp�X�� � @2xp

@Xi@Xj

�X�
#

_Xi
_Xj �2:29�
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and, having in mind (2.15)1, (2.25) and (2.26), we de®ne, for X 2 KX and V 2 KV�X�, the (con®guration
and velocity dependent) set of admissible generalized right accelerations:

KA�X, V� �
�
A 2 RN: gn�A� � ~anE 0, in Pcc

	
: �2:30�

On the other hand, for X 2 KX, V 2 KV�X� and A 2 KA�X, V�, we de®ne the (con®guration, velocity and
acceleration dependent) set of admissible right reactions:

Kr�X, V, A� � fr 2 R2nC :

rn E 0 and
ÿ
gn�A� � ~an

�
rn � 0, in Pcc;

rn � 0, in Pf [ Pcf;

rt 2 mrns
�
gt�A� � ~a t

�
, in P0;

rt � mrns
�
gt�V�

�
, in Pv;

rt � 0, in Pf [ Pcfg

� Kr�X, V� � Kr�X�: �2:31�
Then the set GT�X�Kr�X, V, A� of admissible generalized right reactions can be characterized in the

following manner.

Lemma 2.4. Let X 2 KX, V 2 KV�X� and A 2 KA�X, V� and assume that (2.9) holds for the matrix

G(X). Then R 2 GT�X�Kr�X, V, A� if and only if

R � �A 0 ÿ A�e
X
Pv

mgn�R�s
�
gt�V�

�
gt�A 0 ÿ A� �

X
P0

mgn�R�
ÿ
jgt�A 0 � � ~a tj ÿ jgt�A� � ~a tj

�
,

8A 0 2 KA�X, V�: �2:32�

Proof. Let R 2 GT�X�Kr�X, V, A�. Then, by (2.10),

R � �A 0 ÿ A� � GTG R � �A 0 ÿ A�

� G R �G�A 0 ÿ A�

� G R �
��GA 0 � Äa � ÿ �GA� Äa �

�
with G R 2 Kr�X, V, A�. But in Pcc the following holds: gn�A� � ~an E 0, and gn�A 0 � � ~an E 0, for all

A 0 2 KA�X, V�. Then the inequality (2.32) follows from Lemma 2.6 in Martins et al. (1988).

Let now the inequality statement (2.32) hold and let A 0 ÿ A �2aaa be an arbitrary element of Ker (G).

Then (2.32) implies that 2R � aaaaaaaaae 0 for all aaa 2 Ker (G), hence R 2 �Ker�G��? � Rg�GT� and, proceeding
as above, the statement (2.32) reads

$ $

$

$

$

$
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G R �
��GA 0 � Äa � ÿ �GA� Äa �

�
e

X
Pv

mgn�R�s
�
gt�V�

�hÿ
gt�A 0 � � ~a t

�
ÿ ÿ

gt�A� � ~a t

�i

�
X
P0

mgn�R�
ÿ
jgt�A 0 � � ~a tj ÿ jgt�A� � ~a tj

�
, 8A 0 2 KA�X, V�:

The desired result, G R 2 Kr�X, V, A�, follows then from Lemma 2.6 in Martins et al. (1998) and from

the surjectivity (2.9) of the linear map G: RN
4R

2nC . q

The admissible right accelerations and reactions can be characterized in the following alternative

manner. For X 2 KX, V 2 KV�X� and r 2 Kr�X, V�, we de®ne the (con®guration, reaction and velocity

dependent) set of admissible right accelerations

KA�X, r, V� �def fA 2 RN:

gn�A� � ~anE 0 and
ÿ
gn�A� � ~an

�
rn � 0, in Pcc;

gt�A� � ~a t � 0, in P0 \ Pd;ÿ
gt�A� � ~a t

�
s�rt �E 0, in P0 \ Psg �2:33�

Then this set admits the following variational characterization, the proof of which is given in Appendix A.

Lemma 2.5. Let X 2 KX, V 2 KV�X� and r 2 Kr�X, V�. Then A 2 KA�X, r, V� if and only if

�GA� Äa � � �r 0 ÿ r�e
X
Pv

ms
�
gt�V�

�ÿ
gt�A� � ~a t

�ÿ
r 0n ÿ rn

�� X
P0

mjgt�A� � ~a tj
ÿ
r 0n ÿ rn

�
,

8r 0 2 Kr�K, V�: �2:34� q
2.3. Admissible right velocities and reaction rates

For X 2 KX and r 2 Kr�X� we de®ne the (con®guration and reaction dependent) set of admissible right

generalized velocities,

KV�X, r� �def fV 2 RN:

gn�V�E 0, in Pz;

gn�V� � 0, in Ps [ Pd;

s�rt �gt�V�E 0, in Ps;

gt�V� � 0, in Pdg
� KV�X�: �2:35�

Having in mind (2.24), the (con®guration, reaction and velocity dependent) set of admissible right

reaction rates is de®ned by

Kw�X, r, V� �def fw 2 R2nC :

wnE 0, wngn�V� � 0, in Pz;

wn � 0, in Pf ;

$ $

$

$
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s�rt �wt � mwnE 0 and �wts�rt � � mwn�
ÿ
s�rt �gt�V�

� � 0, in Ps;

wt 2 mwns
�
gt�V�

�
, in Pz;

wt � 0, in Pfg: �2:36�
Then the set GT�X�Kw�X, r, V� of generalized forces corresponding to the right reaction rates admits the

following characterization.

Lemma 2.6. Let X 2 KX, r 2 Kr�X� and V 2 KV�X, r�. Then W 2 GT�X�Kw�X, r, V� if and only if

W � �V 0 ÿ V�e
X
Pc

mgn�W�ÿjgt�V 0 �j ÿ jgt�V�j
�

�
X
Pz

mgn�W�ÿjgt�V 0 �j ÿ jgt�V�j
�
ÿ
X
Ps

mgn�W�s�rt �
ÿ
gt�V 0 � ÿ gt�V�

�
,

8V 0 2 KV�X, r�:
�2:37�

Proof. This result follows from Lemma 2.7 in Martins et al. (1998) by using arguments similar to

those used in Lemma 2.4 above. q

The admissible right velocities and reaction rates can be characterized in the following alternative

manner. For each X 2 KX and each r 2 Kr�X�, we de®ne the (con®guration and reaction dependent) set

of admissible right reaction rates

Kw�X, r� �def fw 2 R2nC :

wnE 0, in Pz;

wn � 0, in Pf ;

jwtj � mwnE 0, in Pz;

s�rt �wt � mwnE 0, in Ps;

wt � 0, in Pfg
� Kw�X, r, 0�: �2:38�

Having then w 2 Kw�X, r�, we de®ne the (con®guration, reaction and reaction rate dependent) set of

admissible right generalized velocities,

KV�X, r, w� �def fV 2 RN:

gn�V�E 0, wngn�V� � 0, in Pz;

gn�V� � 0, in Ps [ Pd;

wtgt�V�E 0 and �jwtj � mwn �gt�V� � 0, in Pz;

s�rt �gt�V�E 0 and �s�rt �wt � mwn�
ÿ
s�rt �gt�V�

� � 0, in Ps;

gt�V� � 0, in Pdg: �2:39�
This set can be characterized by the variational inequality given in the next Lemma, which is established

$

$ $
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essentially in the same manner as the one of Lemma 2.5.

Lemma 2.7. Let X 2 KX, r 2 Kr�X� and w 2 Kw�X, r�. Then V 2 KV�X, r, w� if and only if

GV � �w 0 ÿ w�e
X
Pc

mjgt�V�j
ÿ
w 0
n ÿ wn

�

�
X
Pz

mjgt�V�j
ÿ
w 0
n ÿ wn

�ÿ X
Ps

ms�rt �gt�V�
ÿ
w 0
n ÿ wn

�
, 8w 0 2 Kw�X, r�: �2:40� q

3. Initial acceleration and reaction discontinuities

The initial conditions considered in this section are

X�t� � X0 2 KX �3:1�

ÇX �t� � 0, �3:2�
where the equilibrium con®guration X0 corresponds to some equilibrium reactions r0 2 Kr�X0� such that

[recall (2.13), (2.14) and (2.18)] B�X0, 0� � ÿFU�X0�ÿFO�X0��GT�X0�r0. We begin by proving in Section

3.1 some necessary conditions for the existence of dynamic solutions initiating at the equilibrium

con®guration, with no initial perturbation, but with an acceleration and reaction discontinuity at the

initial time t. In Section 3.2 a su�cient condition is presented which guarantees that, in some

circumstances, a smooth portion of a non-trivial dynamic solution actually follows that initial

discontinuity.

3.1. Necessary conditions for the occurrence of initial acceleration and reaction discontinuities

For each X 2 KX and each pair �A, A 0 � 2 RN � RN we de®ne

m�ÿA, A 0� �def MA �A 0 ÿ
X
Pc

mgn�MA�
��gt�A 0 ���: �3:3�

On the other hand, for each X 2 KX and each pair �r, r 0 � 2 R2nC � R2nC , we de®ne

m#
ÿ
r, r 0

�
� GMÿ1GTr � r 0 ÿ

X
Pc

m
��gt�Mÿ1GTr�

��r 0n: �3:4�

Then we have the following results.

Proposition 3.1. Assume that (2.9) holds. Then a dynamic solution with initial conditions (3.1) and

(3.2) may be initiated with an acceleration discontinuity only if

9A 2 KA

ÿ
X0, 0

�
, A 6� 0, such that

MA�GTr0 2 GTKr

ÿ
X0, 0, A

�
, �3:5�

i.e. such that

$
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m�ÿA, A 0�ÿm��A, A� �
"
r0 �G�A 0 ÿ A� ÿ

X
Pc

mr0n
ÿ
jgt�A 0 �j ÿ jgt�A�j

�#
e 0,

8A 0 2 KA

ÿ
X0, 0

�
:

�3:6�

Proof. Let A 2 KA�X0, 0�, with A 6� 0, be the acceleration discontinuity. Then there must exist r� 2
Kr�X0, 0, A� such that

MA � GT�r� ÿ r0�, �3:7�
i.e. (3.5) holds. Then inequality (3.6) follows from (2.32) and the de®nition (3.3) of m�. q

Corollary 3.2. Let (2.9) hold.

(i) If (3.4) holds then:

m��A, A�E 0: �3:8�
(ii) No dynamic solution with initial conditions (3.1) and (3.2) may be initiated with an acceleration

discontinuity if

m�ÿA 0, A 0� > 0, 8A 0 2 KA

ÿ
X0, 0

�
, A 0 6� 0: �3:9�

Proof. Since, as already mentioned, r0 2 Kr�X0��Kr�X0, 0, 0�, it follows for Lemma 2.4 that

r0 �GA 0
e

X
Pc

mr0njgt�A 0 �j, 8A 0 2 KA

ÿ
X0, 0

�
: �3:10�

Then, taking A 0 � A in (3.10) and taking successively A 0 � 0 and A 0 � 2A in (3.6) we get

ÿr0 �GA�
X
Pc

mr0njgt�A�jE 0,

m��A, A� � ÿr0 �GA�
X
Pc

mr0n
��gt�A���,

which imply the result (3.8). The result (3.9) follows by negation of (3.8). q

Proposition 3.3. A dynamic solution with initial conditions (3.1) and (3.2) may be initiated with an

acceleration discontinuity only if

9Dr 2 Kr

ÿ
X0, 0

�
ÿ r0, Dr 6� 0, such that

Mÿ1GT
Dr 2 KA

ÿ
X0, r0 � Dr, 0

�
�3:11�

i.e. such that
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m#
ÿ
Dr, Dr 0 ÿ Dr

�
e 0, 8Dr 0 2 Kr

ÿ
X0, 0

�
ÿ r0: �3:12�

Proof. The right reactions and accelerations satisfy r� 2 Kr�X0, 0� and A 2 KA�X0, r�, 0�. Then, by
Lemma 2.5 we obtain

GA � �r 0 ÿ r��e
X
Pc

m
��gt�A���ÿr 0n ÿ r�n

�
, 8r 0 2 Kr

ÿ
X0, 0

�
:

However, A�Mÿ1GT�r� ÿ r0� 6� 0, so that r� ÿ r0 6� 0. The result follows then by taking the arbitrary

r 0 2 Kr�X0, 0� in the form r 0 � r0 � Dr 0 with Dr 0 2 Kr�X0,0� ÿ r0 arbitrary, and by using the de®nition

(3.4) of m#. q

Corollary 3.4. (i) If (3.11) holds then:

m#�Dr, Dr�E 0: �3:13�
(ii) No dynamic solution with initial conditions (3.1) and (3.2) may be initiated with an acceleration

discontinuity if

m#
ÿ
w 0, w 0� > 0, 8w 0 2 Kw

ÿ
X0, r0

�
, w 0 6� 0: �3:14�

Proof. The inequality (3.13) follows from (3.12) by taking the arbitrary Dr 0 in (3.12) to be null. On

the other hand, (3.14) follows by negation of (3.13) and by observing that Kr�X0, 0� ÿ r0 � Kw�X0, r0�. q

Remark 3.5. Note that, if (2.9) holds, the necessary conditions (3.5) and (3.11) for the occurrence of an

acceleration discontinuity are equivalent. This happens because �A, r0 � Dr� 2 KA�X0, 0� � Kr�X0, 0, A� is
equivalent to �A, r0 � Dr� 2 KA�X0, r0 � Dr, 0� � Kr�X0, 0�, and because (2.9) implies Ker �GT� � f0g.
Consequently, from GT

Dr �MA, not only it follows (as used in Proposition 3.3) that A 6� 0 �) Dr 6� 0,

but also that Dr 6� 0 �) A 6� 0. q

Propositions 3.1 and 3.3 give nothing but necessary conditions for the occurrence of initial

acceleration (and reaction) discontinuities. A su�cient condition must guarantee that these

discontinuities can actually be followed by (smooth) non-trivial dynamic solutions starting from the

equilibrium con®guration. One such su�cient condition will be established next.

We assume that (2.9) holds and that for some A and Dr satisfying (3.5) and (31) with GT
Dr�MA 6� 0,

the following holds for all particles in Pc�X0�:
either:

gn�A� < 0 and r0n � Drn � r0t � Drt � 0,
�
near future free

� �3:15�

or:

gn�A� � 0, r0n � Drn < 0

and

gt�A� 6� 0 and
ÿ
r0t � Drt

�
s
�
gt�A�

�
� m

ÿ
r0n � Drn

�
� 0

�
near future slip

� �3:16�

or

J.A.C. Martins, A. Pinto da Costa / International Journal of Solids and Structures 37 (2000) 2519±2564 2531



gt�A� � 0 and jr0t � Drtj < ÿm
ÿ
r0n � Drn

� �near future stick�: �3:17�

This means that the acceleration and reaction jump vectors A and Dr give an unambiguous information

on the near future states of each particle in contact at the equilibrium con®guration: strictly free states if

(3.15) holds, strictly stick states if (3.16) holds, and strictly slip states if (3.17) holds. Assuming that such

states hold in some right neighborhood of t, we consider the following decompositions of the reaction

vector r and of the kinematic matrix G:

r �

2
664
rfree

rt slip

Ãr

3
775, Ãr �

"
rn slip

rstick

#
, G �

2
664
Gfree

Gt slip

ÃG

3
775, ÃG �

"
Gnslip

Gstick

#
: �3:18�

Note that the set of the free particles contains those that are already free at the equilibrium

con®guration [f�X0� < 0] and those that become free in the near future (3.15). Then the equations of

motion (2.13) and the unilateral friction contact conditions (2.15) and (2.16) yield the system of

di�erential equations:

M�X�t�� ÈX �t� � B
ÿ
X�t�, ÇX �t�

�
� ÃG

T

m�X�t��Ãr �t�, �3:19�

together with the equality constraints:

ÃG �X�t�� ÇX �t� � 0, �3:20�

where

ÃG
T

m �
h
GT

n slip � mGT
t slipSslip GT

stick

i
: �3:21�

Note that in the construction of the problem (3.19) and (3.20) the kinematic equality constraints

indicated in column I of Table 1 are taken into account by means of (3.20) and the equality constraints

involving the reaction forces (see column II of Table 1) are taken into account in the right-hand side of

Table 1

Contact conditions satis®ed by the nonlinear system in a su�ciently small neighborhood of the equilibrium after an acceleration-

reaction discontinuity

Equality conditions

imposed on the construction of

the nonlinear equations of motion

Remaining inequality

conditions veri®ed by the solution

while it is valid

I

kinematic

II

static

III

kinematic

IV

static

Free rn � 0 f�X� < 0

rt � 0

Stick f�X� � 0 rn < 0

gt� ÇX � � 0 jrtj � mrn < 0

Slip f�X� � 0 rn < 0

rt ÿ s�gt�A��mrn � 0 s�gt�A��gt� ÇX � > 0
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(3.19). In particular,

rt slip � mSsliprn slip; Sslip � diag �sp �; sp � s
�
g
p
t �A�

�
, for each slip particle p:

Note also that the solution (X�t�, Ãr�t�) to the problem (3.19) and (3.20) will be a solution to the original

problem (2.13), (2.15) and (2.16) in a time interval [t, t� Dt[ if the strict inequalities indicated in

columns III and IV of Table 1 are valid in ]t, t� Dt[ and if the accelerations ÈX and the reactions Ãr are

continuous functions of time in �t, t� Dt�.
We now proceed to eliminate the reactions Ãr from eqns (3.19). This can be achieved in two ways.

The ®rst procedure starts by using the assumption that G (and consequently ÃG ) is a full rank matrix

(2.9). In these circumstances if follows from (2.13) that

Ãr � ÃIG
ÿ
M ÈX � B

�
, �3:22�

where, using the decomposition (3.18) of the reactions r into rfree, rt slip and rÃ ,

ÃI � �
0 0 I

�
is an n̂� 2nC matrix; n̂ � nslip � 2nstick, nslip and nstick being the number of slip and stick particles,

respectively; note that in this paper all identity matrices are denoted simply by I, independently of the

appropriate dimensions they have in each case. In this manner (3.19) becomesh
Iÿ ÃG

T

m
ÃIG

i�
M ÈX � B

�
� 0: �3:23�

The kinematic constraints (3.20) are taken into account by selecting a subvector of ÇX containing only

independent velocities. In fact, since ÃG is a full rank matrix, a square non-singular submatrix ÃGD of ÃG

exists such that

ÃG ÇX � ÃG
� ÇX

� � ÃG
D ÇX

D � 0, �3:24�

where ÇX
�
is an N� � 1 vector of independent velocities (N� � Nÿ n̂) and ÇX

D
is an n̂� 1 vector of

dependent velocities (Blajer et al., 1994; Wehage and Haug, 1982). In general this partition of the vector
ÇX is not unique. A criterion to select a best partition is given by Blajer et al. (1994). Using (3.24) to

eliminate the dependent velocities ÇX
D
, the vector ÇX is related to ÇX

�
by

ÇX � CT�X� ÇX�
, �3:25�

where the N� �N matrix C is given by

C �
�
I ÿ

�ÿ
ÃG
D
�ÿ1

ÃG
�
�T�

: �3:26�

Introducing now (3.25) in (3.19) and (Blajer et al., 1994) using the operator C to project the dynamic

eqns (3.23) on the directions of the con®guration space that are tangential to the constraints, the

reduced system of nonlinear equations

M� ÈX
� � B� � 0 �3:27�

is obtained, where

$

$
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M� � M��X� � C

h
Iÿ ÃG

T

m
ÃIG

i
MCT �3:28�

and

B� � B�ÿX, ÇX�� � C

h
Iÿ ÃG

T

m
ÃIG

iÿ
B�M ÇC

T ÇX
�� �3:29�

are the e�ective mass matrix and the e�ective vector of nonlinear terms, both a�ected by the coe�cient

of friction. In the sequel it will be useful to observe that

ÃG
T

m � GTHm

where, using the decompositions (3.18) of r into rfree, rt slip, rn slip, and rstick, and of Ãr into rn slip and rstick,

the 2nC � n̂ matrix Hm is de®ned by

Hm �

2
666664

0 0

mSslip 0

I 0

0 I

3
777775:

The other procedure for the elimination of Ãr in (3.19) starts by projecting those equations on the

directions of the con®guration space that are normal to the constraints, which corresponds to

premultiplying (3.19) by ÃGM
ÿ1

(LoÈ tstedt, 1982a, b; Blajer et al., 1994; Blajer, 1995; Blajer and

Markiewicz, 1995). We get

ÃG ÈX � ÃGM
ÿ1
B � ÃGM

ÿ1 ÃG
T

m Ãr ,

where, di�erentiating the constraints (3.20) with respect to time,

ÃG ÈX � ÿ ÃÇG ÇX :

Then, if the matrix ÃGM
ÿ1 ÃG

T

m is invertible, we get

Ãr �
�
ÃGM

ÿ1 ÃG
T

m

�ÿ1�
ÃGM

ÿ1
Bÿ ÃÇG ÇX

�
, �3:30�

which is substituted in the right-hand side of (3.19) yielding:

M ÈX � ÅB � 0, �3:31�

where

ÅB � ÅB
ÿ
X, ÇX

�
�
�
Iÿ ÃG

T

m

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1
ÃGM

ÿ1
�
B� ÃG

T

m

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1
ÃÇG ÇX : �3:32�

Under the same additional assumption (2.9) of the previous procedure, the projection of (3.31) on the

directions tangential to the constraints and the consideration of the generalized independent velocities
ÇX
�
results in

M# ÈX
� � B# � 0 �3:33�

$

$

J.A.C. Martins, A. Pinto da Costa / International Journal of Solids and Structures 37 (2000) 2519±25642534



with

M# � M#�X� � CMCT �3:34�
and

B# � B#
ÿ
X, ÇX

�� � C

�
ÅB
ÿ
X, CT ÇX

���M ÇC
T ÇX

�
�
: �3:35�

Notice that the latter procedure for the elimination of the reactions yields an e�ective mass matrix M#

(3.33) that is not a�ected by the friction coe�cient and an e�ective vector of nonlinear terms that

combines the original vector B with mass and friction e�ects.

Existence and uniqueness of solution to the problems (3.25), (3.27), or (3.25), (3.33), both with

initial conditions (3.1), (3.2), follows from the general theory of ordinary di�erential equations,

provided the matrices M� or M# are invertible and the functions M�X�, B�X, ÇX � and G(X) are

su�ciently regular. In addition, the accelerations ÈX �t� and the reactions Ãr�t� depend continuously on

time. Then, in view of the strict inequalities in (3.15), (3.16) and (3.17), no change in the state of any

contact candidate particle occurs in some interval ]t, t� Dt[, which justi®es the assumptions made

above and con®rms the solution to the problem (3.19) and (3.20) as a solution to the original

problem (2.13), (2.15) and (2.16).

In this manner we have proved the following result:

Proposition 3.6. Assume that:

(i) the lines of G(X) are linearly independent (2.9);

(ii) the equivalent conditions (3.5) and (3.11) hold with GT
Dr�MA 6� 0;

(iii) for each particle in Pc, one of the three sets of conditions (3.15), (3.16) or (3.17) holds;

(iv) matrices ÃGM
ÿ1 ÃGT

m in (3.30) and M� in (3.28) are invertible (see Lemma 3.7 below);

(v) M(X), B(X, ÇX ), G(X) and @G�X�=@X are bounded and Lipschitz continuous in (X, ÇX ).

Then there exists a dynamic solution with an initial acceleration and reaction discontinuity followed by

a smooth dynamic solution. q

In relation with the above procedures for elimination of the reactions Ãr we observe the following.

Lemma 3.7. Let (2.9) hold. Then the matrix M� in (3.28) is singular if and only if the matrix ÃGM
ÿ1 ÃG

T

m

in (3.30) is singular.

Proof. First we prove that if ÃGM
ÿ1 ÃG

T

m is singular then M� is singular. Let ÃGM
ÿ1 ÃG

T

m Ãr
0 � ÃGM

ÿ1
GTHm Ãr

0

� 0 for some 0 6� r̂
0 2 Rn̂. Since Hm and GT are full column rank matrices, then

0 6�Mÿ1GTHm Ãr
0 2 Ker� ÃG �. For M� to be singular

9A 0 2 Ker
ÿ
ÃG
�
, A 0 6� 0:

�
IÿGTHm

ÃIG

�
MA 0 �A 00 � 0, 8A 00 2 Ker

ÿ
ÃG
�
: �3:36�

The latter condition is ful®lled with A ' de®ned as Mÿ1GTHm Ãr
0
, because G GT � I and Hm

ÃIHm � Hm.

We prove now that if M� is singular then ÃGM
ÿ1 ÃG

T

m is singular. We assume that (3.36) holds.

Consequently

MA 0 ÿGTHm
ÃIG MA 0 2

�
Ker

ÿ
ÃG
��?� Rg

ÿ
ÃG
T
�
� Rg�GT � �3:37�

and also 0 6� MA 0 2 Rg�GT�. The 0 6� MA 0 � GTr 0 with 0 6� r 0 2 R2nC due to (2.9). From (3.37) we

$

$

$
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conclude that

GT

2
666664

r 0free

r 0t slip ÿ mSslipr
0
n slip

0

0

3
777775 � GT

2
666664

0

0

yn slip

ystick

3
777775

for some yn slip and ystick. Due to (2.9), the previous equation implies that r 0free, r 0t slip ÿ mSslipr
0
n slip, yn slip

and ystick vanish. Hence 0 6� r 0 � Hm
ÃIr

0 � Hm Ãr
0
, which implies Ãr

0 6� 0, since Hm is a full column rank

matrix. Finally we conclude that

ÃGM
ÿ1 ÃG

T

m Ãr
0 � ÃGM

ÿ1
GTHm Ãr

0 � 0,

because Mÿ1GTHm Ãr
0 �A 0 2 Ker � ÃG �: q

3.2. A three degree-of-freedom example of initial acceleration and reaction discontinuities

We consider a homogeneous thin rigid rod of length L and mass m with plane motion, that may

establish frictional contact with a ®xed ¯at obstacle at the extremity A of the rod (see Fig. 1). In

absence of contact the system has three degrees of freedom; the adopted generalized coordinates are the

angle y between the rod and the vertical direction and the X and Y coordinates of the center of mass

CM, which are grouped in the vector X � � y X Y �T. Constant external forces, FX and FY, and

moment, Mz, are applied at the rod center of mass. The kinematically admissible half-plane is de®ned

by f�X��ÿY� L=2 cos yE 0.

Numerous studies have considered this or related systems. The interest has been concentrated on: (i)

the non-existence or the non-uniqueness of solution to the problem of ®nding the (right) accelerations

and reactions of the rod for some initial conditions involving non-vanishing velocities (LoÈ tstedt, 1981;

Pfei�er and Glocker, 1996; GeÂ not and Brogliato, 1998); (ii) the occurrence of velocity discontinuities

Fig. 1. A thin homogeneous rod subjected to constant forces at its center of mass (CM) and frictional contact reactions at its low-

est extremity (A).
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during an impact (Jean and Moreau, 1985; Brach, 1989; Stronge, 1990; Wang and Mason, 1992; Stewart

and Trinkle, 1996); (iii) the possible occurrence of velocity discontinuities without any impact (frictional

catastrophes, Moreau, 1988) for some initial conditions that also involve a non-vanishing kinetic energy

(Mason and Wang, 1998). Our interest here is to study the occurrence of dynamic solutions initiating at

some equilibrium states of the rod with an acceleration and reaction discontinuity; vanishing initial

velocities are considered in the present study, a situation addressed also in Example 2 of LoÈ tstedt (1981).

We consider equilibrium states such that f�X0� � ÿY 0 � L=2 cos y0 � 0 and r0 � � r0t r0n �T � �aÿ 1�T,
with ÿmE aE 0. We study separately the case of a static reaction in the interior of the friction cone

(Case 1, ÿm < aE 0) and the case of a non-vanishing reaction on the friction cone (Case 2, a � ÿm).
The analysis for 0E aE m would be similar, and it is easy to show that no initial acceleration and

reaction discontinuities are possible when r0 � 0 and f�X0�E 0. The right generalized accelerations are

denoted by �y
�
, �X

�
and �Y

�
and the right normal and tangential acceleration of particle A are denoted

by a�n and a�t . The jump eqns (3.5) are2
66664
mL2

12
0 0

0 m 0

0 0 m

3
77775
2
664

�y
�

�X
�

�Y
�

3
775 � GT�X0 �

"
r�t ÿ a

r�n � 1

#

where

G�X� �
"
GA

t

GA
n

#
�

2
664

L

2
cos y 1 0

ÿL

2
sin y 0 ÿ1

3
775:

Case 1 [static reaction in the interior of the friction cone: ÿm < aE 0]. In this case, it is possible to

show that a reaction jump towards a contact state with non-vanishing reaction and possible slip to the

Fig. 2. Possible initial reaction jumps followed by smooth near future evolutions in Case 1 (static reaction in the interior of the fric-

tion cone).
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left (r�n < 0 and r�t � ÿmr�n ) cannot occur. The possible cases of initial acceleration and reaction

discontinuities are discussed next (see Fig. 2).

Case 1A [ jumps towards a contact state with non-vanishing reaction and possible slip to the right: a�t >

0, a�n �0, r�n < 0, r�t �mr�n ]. From the jump equations we obtain

a�t � ÿ
4

3
�m� a�

m

�
1

3
�
ÿ
sin y0 ÿ m cos y0

�
sin y0

�

and

r�n � ÿ
1

3
�
ÿ
sin y0 � a cos y0

�
sin y0

1

3
�
ÿ
sin y0 ÿ m cos y0

�
sin y0

so that a necessary condition for such a jump is that 1=3� �sin y0 � a cos y0� sin y0 < 0, which occurs

only if a < 0. Notice that this jump occurs with a reduction of the absolute values of both the

tangential and the normal reaction.

The consideration of the equations of motion for a smooth near future sliding to the right yields,

after eliminating the translational degrees-of-freedom,

mL

2

�
1

3
� �sin yÿ m cos y� sin y

�
�y

� ÿmL

2
_y
2�sin yÿ m cos y� cos yÿ sin y0 ÿ a cos y0 � sin yÿ m cos y:

Since 1=3� �sin y0ÿm cos y0� sin y0 < 0, particle A does begin sliding towards the right. Notice that, in

this example, the matrix ÃGMÿ1 ÃGT
m corresponding to strict sliding towards the right reduces to a scalar that is

equal to the product of 1=3� �sin yÿ m cos y� sin y by a positive constant factor. This means that all the

assumptions of Proposition 3.6 hold in this case, so that the previous conclusion that a smooth evolution

exists after the initial acceleration and reaction jump is also the result of applying that proposition.

We determine now the motion of the rod for a speci®c set of data suitable for the present case: L =

1, m � 1, m � 2, X0� � 0:5 0 0:439 �T and r0 � �ÿ1:8 ÿ1 �T. Immediately after the jump the reactions

are r���ÿ1:395 ÿ0:698 �T and the extremity A begins sliding towards the right with increasing contact

reactions. After some time, its horizontal velocity vanishes. At this instant, X�� 0:645 0:03 0:4 �T, ÇX �
� 0:139 ÿ0:056 ÿ0:042 �T and r � �ÿ2:458 ÿ1:229 �T. The analysis of the equations of motion for the

possible near future evolutions leads to the conclusion that contact is lost: a reaction jump towards the

vertex of the friction cone occurs when the horizontal velocity of particle A vanishes. A stroboscopic

representation of the motion is shown in Fig. 3.

Case 1B [ jump towards a contact state with no reaction: a�n E 0, r��0]. The expression for the normal

acceleration of the contact extremity of the rod is

a�n � 1

m

�
1� 3

ÿ
sin y0 � a cos y0

�
sin y0

�
:

A necessary condition for such a jump is that 1=3� �sin y0�a cos y0� sin y0E 0. From the equations of

motion for a smooth evolution in the near future, we conclude that two di�erent possibilities exist:
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(i) if 1=3� �sin y0�a cos y0� sin y0 < 0, the right normal acceleration the particle A is strictly negative

(a�n < 0) and the rod looses contact, a conclusion that is consistent with the result of applying

Proposition 3.6 to this case; in Fig. 4 a stroboscopic representation of the motion of the rod for a

speci®c set of data is presented;

(ii) if 1=3� �sin y0 � a cos y0� sin y0 � 0, the right normal acceleration of particle A vanishes but the

lowest order derivative of the displacement of particle A along the normal to the obstacle that does

not vanish (the fourth derivative) is strictly negative if sin 2y0�a cos 2y0 < 0 (the rod loses contact),

and strictly positive if sin 2y0 � a cos 2y0 > 0 (contact persists but with sliding towards the right);

note that Proposition 3.6 could not be applied to this case because assumption (iii) does not hold.

Case 2 [non-vanishing reaction on the friction cone: a � ÿm]. Similarly to Case 1, it can be shown that

no jump is possible towards a contact state with non-vanishing reaction and possible slip to the left

r�n < 0 and r�t � ÿmr�n ). It can also be shown that no jump is possible towards a contact state with

non-vanishing reaction and possible slip to the right. The necessary condition for the occurrence of such

a jump is that 1=3� �sin y0 ÿ m cos y0� sin y0 � 0. But the solution of the equations of motion for a

smooth near future sliding towards the right yields indeterminacies of the type 0/0 for the tangential

acceleration of the contact particle A and for the normal reaction, as the initial time (the instant of the

possible discontinuity) is approached from the right. The evaluation of those limits with 1'HoÃ pital's rule

yields always a sign inconsistency for the normal reaction or for the tangential acceleration of particle

A. This example shows that the veri®cation of the necessary condition for an acceleration jump does not

guarantee that it can actually be followed by a smooth non-trivial dynamic solution. Notice that

assumption (iv) of Proposition 3.6 does not hold in this case. The only possible case of initial

acceleration and reaction discontinuities is the following (see Fig. 5).

Case 2A [ jump towards a no reaction contact state: a�n E 0 and r� � 0]. The expressions for the

normal and tangential acceleration of the contact particle A are:

Fig. 3. Stroboscopic view of the motion of the rod after an initial acceleration and reaction discontinuity towards a contact state

with non-vanishing reaction and possible slip to the right. Data: L = 1, m = 1, m = 2, X0 = [0.5 0 0.439]T and r0 = [ÿ1.8 ÿ1]T.
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a�n � 1

m

�
1� 3

ÿ
sin y0 ÿ m cos y0

�
sin y0

�
;

a�t � ÿ 1

m

�
ÿ m� 3

ÿ
sin y0 ÿ m cos y0

�
cos y0

�
:

A necessary condition for such a jump is that 1=3� �sin y0ÿm cos y0� sin y0E 0. Two possibilities exist:

Fig. 4. Stroboscopic view of the motion of the rod after an initial acceleration and reaction discontinuity towards a contact state

with no reaction, followed by loss of contact. Data: L = 1, m = 1, m = 2, X0 = [0 0.439 0.5]T and r0 = [ÿ1.8 ± 1]T.

Fig. 5. Possible initial reaction jumps followed by smooth near future evolutions in Case 2 (non-vanishing static reaction on the

friction cone).
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(i) if 1=3� �sin y0ÿm cos y0� sin y0 < 0, the normal acceleration of particle A is strictly negative and the

rod looses contact: Proposition 3.6 could be applied to this case; (ii) if 1=3� �sin y0ÿm cos y0� sin y0�0,

the right normal acceleration of particle A vanishes and assumption (iii) of Proposition 3.6 does not

hold; the lowest order derivative of the displacement of particle A along the normal to the obstacle that

does not vanish (the fourth derivative) is strictly negative if sin 2y0 ÿ m cos 2y0 < 0 (the rod looses

contact), and strictly positive if sin 2y0 ÿ m cos 2y0 > 0; in the latter case the above right acceleration a�t
would be positive but the required normal reaction would be also positive, so that a smooth near future

sliding towards the right is not possible (assumption (iv) of Proposition 3.6 does not hold).

4. Divergence of smooth dynamic solutions with perturbed initial conditions

We discuss now the existence of smooth dynamic solutions (X(t ), r(t )) to the nonlinear system (2.13)

starting from (perturbed) initial conditions arbitrarily close to an equilibrium state (X0, r0) and diverging

from that equilibrium state. Liapunov's linearization method is used for that purpose: the stability of

the actual nonlinear system is studied by analysing the behavior of the directionally linearized system in

the neighborhood of the static equilibrium con®guration. In particular, we will show in Proposition 4.4

that, under certain conditions, a solution to the nonlinear system for an initial perturbation along a

direction that corresponds to a divergent solution of the linearized system, is also divergent.

Throughout this section we assume that

M�X�, B�X, ÇX �, G�X� and @G�X�=@X are continuously differentiable

in the neighborhood of
ÿ
X, ÇX

�
�
ÿ
X0, 0

�
: �4:1�

4.1. The directionally linearized problem

In the neighborhood of the equilibrium state, and for admissible directions of the increments of the

generalized coordinates and the contact reactions

dX�t� 2 KV

ÿ
X0, r0

�
, dr�t� 2 Kw

ÿ
X0, r0, dX�t�

�
, �4:2�

the equations of motion (2.13) have the following linearized form

M�X0�d ÈX �t� �K
ÿ
X0, r0

�
dX�t� � GT�X0 �dr�t�, �4:3�

where the N�N tangent sti�ness matrix K�X0, r0� is the sum of contributions from the deformation

energy, the potential energy of the external forces and the contact related nonlinearities, respectively:

K
ÿ
X0, r0

�
� KU�X0� �KO�X0� �KC

ÿ
X0, r0

�
, �4:4�

where, for i, j � 1, . . . , N,

K U
ij
�X0� � ÿ@F U

i

@Xj

�X0� � @2U

@Xi@Xj

�X0 �, K O

ij
�X0� � ÿ@F O

i

@Xj

�X0� � @2O

@Xi@Xj

�X0�

K C
ij

ÿ
X0, r0

�
� ÿ

X
Pc

"ÿ
r0nn� r0t t

�
� @2x

@Xi@Xj

ÿ w
ÿ
r0nGtiGtj ÿ r0tGniGtj

�#
: �4:5�
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The latter contribution to the tangent sti�ness matrix and the right-hand side of (4.3) result both from

the linearization of the generalized reactions R�X, r��GT�X�r:

dR
ÿ
X0, r0

�
� dGT�X0�r0 �GT�X0�dr

� ÿKC
ÿ
X0, r0

�
dX�GT�X0�dr: �4:6�

From (4.5) it is clear that the ®rst contribution to the matrix KC has the character of a geometric

sti�ness matrix and the second contribution results from the obstacle curvature. This latter contribution

may be nonsymmetric only if tangential reactions exist on the contact. Note that the nonlinear inertia

terms D in (2.13) and (2.14) have no contribution to the linearized equations at �X, ÇX � � �X0, 0�, since
they are quadratic functions of the generalized velocities.

4.2. Instability of the directionally linearized dynamic problem

For te t we consider perturbed dynamic solutions of the linearized system (4.3) in the form

dX�t� � a�t�V, dr�t� � b�t�w, �4:7�
where

V 2 KV

ÿ
X0, r0

�
and w 2 Kw

ÿ
X0, r0, V

�
�4:8�

de®ne constant directions in the sets of right admissible displacement and reaction increments; the

function of time a is twice continuously di�erentiable and a and _a are non-negative and non-decreasing;

the function b is continuous, non-negative and non-decreasing in the same interval; the initial values

a�t�e 0 and _a�t�e 0 are arbitrarily small.

For each �V, V 0 � 2 RN � RN we continue to use the notation (3.3) and we de®ne:

a�
ÿ
V, V 0� �def KV �V 0 ÿ

X
Pc

mgn�KV�jgt�V 0 �j: �4:9�

For given V 2 RN and each �w, w 0 � 2 R2nC � R2nC we also de®ne

m#
v

ÿ
w, w 0� �def GMÿ1�G TwÿKV� �w 0 ÿ

X
Pc

m
��gtÿMÿ1�GTwÿKV�

���w 0
n: �4:10�

Note that, for V = 0, the latter de®nition reduces to the de®nition (3.4) of m#�w, w 0 �.

Proposition 4.1. Let (2.9) hold. Then

9le 0 and V 2 KV

ÿ
X0, r0

�
, V 6� 0; such that

ÿ
l2M�K

�
V 2 GTKw

ÿ
X0, r0, V

�
�4:11�

i.e., such that

l2
�
m�ÿV, V 0�ÿm��V, V�

�
�
�
a�
ÿ
V, V 0�ÿ a��V, V�

�
e 0, 8V 0 2 KV

ÿ
X0, r0

�
, �4:12�

$
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if and only if the linearized system (4.3) admits a solution of the form (4.7) and (4.8) with

w � G
ÿ
l2M�K

�
V �4:13�

and

b�t� � a�t� �

8><
>:
a�t�cosh

�
l�tÿ t��� �

_a �t�
l

�
sinh

�
l�tÿ t�� if l > 0

a�t� � _a �t��tÿ t� if l � 0:

�4:14�

In these circumstances, the equilibrium state �X0, r0� of the linearized system is dynamically unstable by

divergence.

Proof. The equivalence between (4.11) and (4.12) results from the characterization (2.37) of the set

GTKw�X0, r0, V�. The su�ciency of (4.11) is obtained by direct substitution of (4.7), (4.13) and (4.14) in

(4.3). The necessity part of the proof follows the same arguments of Propositions 3.7 and 3.9 in Martins

et al. (1998). q

An alternative formulation for the above eigenproblem can be given. With that purpose, we consider

®rst the following auxiliary problem.

Given V 2 RN, ®nd wV 2 Kw�X0, r0� such that

Mÿ1ÿGTwV ÿKV
�
2 KV

ÿ
X0, r0, w

�
, �4:15�

i.e., such that

m#
v

ÿ
wV, w

0 ÿ wV

�
e 0, 8w 0 2 Kw

ÿ
X0, r0

�
: �4:16�

If (2.9) holds and the coe�cient of friction is su�ciently small, it is possible to show that, for

each given V 2 RN, there is a unique solution wV to the problem (4.15) and (4.16); the proof can be done by

using arguments of the type used by Klarbring (1990b) in a related problem; see also Cocu (1990). In these

circumstances, we denote byW: RN: 4Kw�X0, r0� the map that assigns to each V 2 RN the unique solution

wV to the problem (4.15) and (4.16). Then we construct the nonlinear equality eigenproblem

l2MV�KVÿGT
W�V� � 0, �4:17�

and we have the following result.

Proposition 4.2. Assume that (2.9) holds and that the problem (4.15) and (4.16) has a unique solution. If

there exists V 2 RN, V 6� 0, such that (4.17) holds, with l > 0, then the linearized system (4.3) admits a

solution of the form (4.7) and (4.8) with w �W�V� and a and b given by (4.14)1. The same conclusion

holds, with a and b given by (4.14)2, if (4.17) is satis®ed with l � 0 and 0 6� V 2 KV�X0, r0, w�.

Proof. From (4.17) and (4.15), it is clear that

W�V� 2 Kw

ÿ
X0, r0

�

l2V � Mÿ1ÿGT
W�V� ÿKV

�
2 KV

ÿ
X0, r0,W�V�

�
, �4:18�

from which it follows, if l > 0, that V 2 KV�X0, r0,W�V��. Hence (4.11) holds.

$
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If l � 0, V 2 KV�X0, r0,W�V�� has to be imposed independently since it does not necessarily follow

from (4.18). q

The above conditions for divergence instability lead to the resolution of a set of classical generalized

linear eigenproblems, together with the veri®cation of some inequalities. These various linear

eigenproblems are obtained by considering all possible combinations of near future states of the contact

candidate particles; actually, since the particles in Pf�X0� (currently free) and in Pd�X0, r0� (currently
stick) will remain so in the near future, only the combinations of possible near future states of the

particles in Pz�X0, r0� and Ps�X0, r0� need to be considered.

The possible near future evolutions for the particles in Pz�X0, r0� and Ps�X0, r0� are summarized in

Table 2.

The total number of classical generalized linear eigenproblems that may be constructed in this manner

is 4nz � 2ns �nz�#Pz, ns�#Ps�, because a contact particle in Pz has four possible near future evolutions

(zf, zd, zs+ and zsÿ) and a particle in Ps has two possible near future evolutions (sd and ss). Assuming

now that one combination of the above near future evolutions holds, and taking into account all the

equality conditions in columns I and II of Table 2, the inclusion eigenproblem (4.11) becomes the

following constrained linear eigenproblem on the unknowns �l2, V, Ãw �ÿ
l2M�K

�
V � ÃG

T

m Ãw �4:19�

ÃGV � 0, �4:20�
followed by the veri®cation that the solution vectors �V, Ãw � satisfy the inequalities in columns III and

IV of Table 2. The decompositions used in (3.18) are used in (4.19) and (4.20) for the vector w and the

matrix G. Notice that here we have

Table 2

Conditions on V and w corresponding to every possible near future evolution of a contact particle that belongs to set Pz or Ps in

the static equilibrium state

Equality conditions

imposed on the construction of

the linear eigenproblem

Remaining inequality

conditions to be veri®ed

by the solution

I II III IV

kinematic static kinematic static

Pz zf wn � 0 gn(V)E0

wt � 0

zd gn(V) � 0 wn E 0

gt (V) � 0 jwtj � mwn E 0

zs+ gn(V) � 0 wt ÿ mwn � 0 gt�V�e 0 wn E 0

zsÿ gn�V� � 0 wt � mwn � 0 gt�V�E 0 wn E 0

Ps sd gn�V� � 0

gt�V� � 0 s�r0t �wt�mwn E 0

ss gn�V� � 0 wt � s�r0t �mwn � 0 s�r0t �gt�V�E 0
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wfree �
"
wf

wzf

#
� 0, wstick �

2
664
wd

wzd

wsd

3
775,

wt slip �

2
664
wtzs�

wtzsÿ

wtss

3
775 � mSslipwn slip, wn slip �

2
664
wnzs�

wnzsÿ

wnss

3
775

with

Sslip � diag�sp �, sp �

8>><
>>:
�1, in zs� ,

ÿ1, in zsÿ ,

ÿs
�
r0t
�
, in ss:

�4:21�

The elimination of the reaction rates Ãw from (4.19) follows the same steps of the procedures used in

Section 3 for the elimination of the reactions Ãr from (3.19). An independent set of generalized velocities

V� is chosen such that V � CTV�.
For the ®rst procedure, the elimination of the reactions and the projection of the equations on the

directions tangential to the constraints yield the reduced eigensystemÿ
l2M� �K��V� � 0, �4:22�

where M� is again given by (3.28) and, similarly,

K� � C

h
Iÿ ÃG

T

m
ÃIG

i
KCT: �4:23�

These e�ective mass and sti�ness matrices are both a�ected by the friction coe�cient and they are in

general non-symmetric. These matrices M� and K� coincide with their homologous in Martins et al.

(1998), when the case of a linear elastic system and a ¯at obstacle is considered, the normal and

tangential displacements of the contact candidate particles are used as generalized coordinates (G is a

Boolean matrix), and only near future evolutions zf and ss are considered for all the contact particles in

Pz and Ps, respectively. The ®rst reaction rates are given by

w � G
ÿ
l2M�K

�
CTV� �4:24�

The second procedure yields the eigensystemÿ
l2M# �K#

�
V� � 0, �4:25�

with M# given again by (3.34) and

K# � C

�
Iÿ ÃG

T

m

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1
ÃGM

ÿ1
�
KCT: �4:26�

The ®rst reaction rates are given by

w � Hm

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1
ÃGM

ÿ1
KCTV�: �4:27�

$

$
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As observed earlier, this second procedure can be applied if matrix ÃGM
ÿ1 ÃG

T

m is non-singular. The

invertibility of matrices ÃGMÿ1 ÃGT
m and M� is related by Lemma 3.8.

In the next proposition we summarize the equivalence between the results of Propositions 4.1 and 4.2

and those that can be obtained from the previous sets of linear eigenproblems of the form (4.22) or (4.25).

Proposition 4.3. Let the assumptions of Proposition 4.1 [or of Proposition 4.2] hold. The statements

(4.11) and (4.12) [or (4.17)] hold for some admissible V 6� 0 and some le 0 if and only if some of the

linear eigenproblems (4.21) [or (4.25)] is solved by the same value of l and some V� 6� 0, with V � CTV�,
and the inequalities in columns III and IV of Table 2 are satis®ed by that vector V and the corresponding

w given by (4.24) [or by (4.27)]. q

4.3. Divergence instability of an equilibrium state of the original nonlinear system

Under some additional conditions we can conclude that the equilibrium state of the given nonlinear

system is also unstable by divergence.

Proposition 4.4. Assume that:

(i) the lines of G(X) are lineraly independent (2.9);

(ii) the equivalent conditions (4.11) and (4.12) in Proposition 4.1 hold for a real strictly positive l2, and,

for the corresponding linear eigenproblem (4.22), all other l2 are non-positive real numbers;

(iii) at all the particles in Pz and Ps, the inequalities in columns III and IV in Table 2 are satis®ed in the

strict sense by the vectors V and w in (4.11) and (4.13);

(iv) the matrices ÃGMÿ1 ÃGT
m in (4.26) and M� in (4.22) are invertible;

(v) M�X�, B�X, ÇX �, G�X� and @G�X�=@X are continuously di�erentiable in the neighborhood of �X, ÇX � �
�X0, 0� (4.1).

Then the equilibrium state of the actual nonlinear system corresponding to X0 and r0 is dynamically

unstable (a divergence instability).

Sketch of the proof. A su�ciently small initial perturbation to the equilibrium state of the nonlinear

system is given,

X�t� 2 KX, X�t� � X0 � a�t�V� Xw

ÇX �t� 2 KV�X�t��, ÇX �t� � a�t�lV� Vw

kÿXw, Vw

�kE Ca2�t�k�V, lV�k2 �4:28�

where C > 0, a�t� > 0 and, using assumption (ii), l > 0 and V are a solution to (4.11) and (4.12). Note

that, due to the possible curvature of the obstacle, the perturbation given to the nonlinear system cannot

in general coincide with the perturbation a�t��V, lV� of the linearized system: this is the reason for the

need to introduce the correcting terms �Xw, Vw� in (4.28). The perturbed states of the contact candidate

particles correspond to the strictly free, sliding or stick behaviors determined by the directions V and w

obtained from (4.11) and (4.13) under the assumption (iii). More speci®cally we have: fp�X�t�� < 0, at

all the free particles, with gpn� ÇX �t�� < 0 at the zf particles; fp�X�t�� � gpn� ÇX �t�� � 0 and spg
p
t � ÇX �t�� > 0, at

the slip particles (recall (4.21)); and xp�X�t�� ÿ xp�X0� �Gp�X�t�� ÇX �t� � 0 at the stick particles. Due to

the assumed smoothness of the obstacles, the correcting terms �Xw, Vw� can be chosen with an order of

magnitude of a2�t�.
On the other hand, assumption (iv) guarantees that it is possible to eliminate the reactions and write
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both the nonlinear and the linearized equations of motion only in terms of the kinematic varibles X�t�
and ÇX �t� (see Appendix B). The system of nonlinear ordinary di�erential equations obtained after

elimination of the reactions has a unique solution and the reactions are continuous functions of time, as

a consequence of (iv) and (v) [LoÈ tstedt, 1981; LoÈ tstedt, 1982a; Vidyasagar, 1993).

But assumption (ii) implies that the coe�cient matrix of the linearized system has a strictly positive

eigenvalue (the value l > 0 in (4.28) and in Proposition 4.1). Consequently, it is possible to show (using

assumption (v), see Appendix B) that the solution of the nonlinear system with the initial conditions

(4.28) grows exponentially. Finally, the conclusion that the equilibrium state is unstable follows by

showing (also in Appendix B) that the perturbed solution (X�t�, r�t�) leaves the neighborhood of the

equilibrium state before it reaches the boundary of the admissible region of the con®guration-reaction

space where it is valid. q

4.4. Illustrative examples of small dimension

Example A. The e�ect of obstacle curvature on (smooth) divergence. We consider the 2 d.o.f. system

represented in Fig. 6, which is a modi®ed version of the one presented by Klarbring (1990a). It consists

of a particle of mass m restrained by a system of linear springs. The reference position of the particle

corresponds to its equilibrium under no external forces (undeformed springs). The generalized

coordinates are the components of the particle displacement u � �u1 u2�T measured from that reference

state in the ®xed orthonormal reference frame whose origin coincides with that reference position. The

2� 2 elastic sti�ness matrix KU has diagonal elements K11 and K22 and non-diagonal components

K12 � K21.

The main modi®cation relatively to the system discussed in Klarbring (1990a) is the curvature of the

obstacle w � 1=R where R is the radius of curvature. The equilibrium state studied hereafter results from

the application of an additional constant force f0 to the particle m such that r0t � mr0n: a situation of

impending sliding towards the right. In this case Gt�u0� � �1 0� and Gn�u0� � �0 1�. The sets of admissible

Fig. 6. Modi®ed form of Klarbring's example (Klarbring, 1990a) involving a curved obstacle.
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right velocities and right reaction rates are

KV

ÿ
u0, r0

�
� ��V1, V2�: V2 � 0, V1e 0

	
Kw

ÿ
u0, r0, V

�
� �

�wt, wn�: ÿ wt � mwnE 0, � ÿ wt � mwn�V1 � 0
	
:

For this example, eqn (4.22) gives2
6664l2

"
m 0

0 m

#
�

2
6664
K11 ÿ f 0

2

R
K12

K12 � m
f 0
2

R
K22

3
7775
3
7775 �

"
V1

V2

#
�
"
wt

wn

#

where the tangent sti�ness matrix was constructed as indicated in (4.23). Using the fact that V2 � 0 and

wt � mwn, the previous system reduces to�
l2m�

�
K11 ÿ mK12 ÿ

ÿ
1� m2

� f 0
2

R

��
V1 � 0,

the single equation that corresponds to (4.22). When K11ÿmK12ÿ�1� m2�f 0
2=R < 0 we conclude from

Proposition 4.4 that the system is unstable by divergence. When the obstacle curvature vanishes the last

equation yields the well-known result for the original example of Klarbring (¯at obstacle). From the

previous equation we conclude that, as expected, the convexity of the obstacle �w � �1=R > 0� facilitates
instability.

Example B. A non-associative Shanley column. This example deals with a column having elastic

supports that are connected to frictional sliders, as represented in Fig. 7. It is a modi®ed version of

another example presented by Klarbring (1998). The model consists of a rigid homogeneous bar AB of

length L and mass M rigidly connected at point B to a rigid massless bar orthogonal to AB. Point B

has no horizontal displacement. The column is supported by four springs of sti�ness K each. The rigid

bars are connected with the four vertical springs by frictionless sliders E and F. These four springs

remain vertical. The particles C and D of mass Mp are attached to the upper extremities of the upper

vertical springs and may establish unilateral frictional contact with horizontal obstacles. The coe�cient

of friction is m. Particles C and D are also attached to horizontal springs of sti�ness K. The initial

distance of the vertical springs to the axis of symmetry is Lh. A vertical downward prescribed

displacement �Uv is applied to both the horizontal obstacles: �Uv is measured from the equilibrium

position of the particles C and D when they are acted only by gravity. The extremities of the horizontal

springs opposite to particles C and D have both an initial horizontal prescribed displacement �Uh which

corresponds to an initial compression of those springs.

This mechanical system has six degrees-of-freedom. We choose as generalized coordinates the vertical

displacement (d) of point B, the angle (y) between bar AB and the vertical and the horizontal �uCt , uDt �
and vertical �uCn , uDn � components of the displacements of particles C and D. The displacements are

measured from the reference con®guration that coincides with the symmetric equilibrium con®guration

of the system under the simultaneous action of gravity and vertical prescribed displacements � �Uv�. X�
�d y uCn uDn uCt uDt �T is the vector of non-dimensional generalized coordinates. The generalized coordinates

with dimension of length are non-dimensionalized by multiplying them by the factor 1/L. The non-

dimensional prescribed displacements are �uv � �Uv=L and �uh � �Uh=L. The non-dimensional external

force P and the non-dimensional reaction forces r� �rCn , rDn , rCt , rDt � are obtained from the dimensional

ones by multiplication by the factor 1/KL. Time is non-dimensionalized by multiplication by the factor
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�����������
K=M

p
. The horizontal prescribed displacements �uh have the upper bound m �uv=2, so as to keep the

reference equilibrium reactions at C and D inside the friction cone.

In this particular example the complete (non-dimensional) Jacobian matrix G and the left inverse G

of GT are equal:

G � G �

2
666664

GC
n

GD
n

GC
t

GD
t

3
777775 �

2
666664

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
777775:

The fundamental trajectory of the system is

d � P

4
; y � uCn � uDn � uCt � uDt � 0, for P 2 �

0, PA

�
,

d � P

4
; y � uCn � uDn � 0, uDt � ÿuCt � �uh ÿ m

2

�
�uv ÿ P

2

�
, for P 2 �

PA, PB

�

d � P

2
; y � 0; uCn � uDn � ÿP

2
; uDt � ÿuCt � �uh, for Pe PB,

$

$

Fig. 7. A column with frictional-contact supports leading to bifurcations from stable con®gurations of the fundamental trajectory

involving sliding of one or both unilateral contacts.
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where PA � 2� �uv ÿ 2 �uh=m� is the (non-dimensional) load at which impending slip of the particles C and

D is ®rst attained, and PB � 2 �uv is the value of the vertical load for which the reactions at C and D

vanish. For a graphical representation of the fundamental trajectory see Fig. 8.

For the set of non-dimensional generalized coordinates de®ned above the mass and sti�ness matrices

are

M � diag
�
1, 1

3
, m, m, m, m

�
and

K �

2
666666666666664

4 0 1 1 0 0

0 a lÿ uDt ÿÿlÿ uDt
� P

2

P

2

1 lÿ uDt 1 0 0 0

1 ÿÿlÿ uDt
�

0 1 0 0

0
P

2
0 0 1 0

0
P

2
0 0 0 1

3
777777777777775

for a generic equilibrium state �X0, r0� on the fundamental trajectory. The non-dimensional parameters

that govern the behavior of the system are m � Mp=M, l � Lh=L, w � Mg=�2KL� as well as �uv, �uh and m

de®ned before. In this study we denote by a and b the following non-dimensional quantities evaluated

along the fundamental trajectory: a � a�uDt , P � � 4�lÿ uDt �2ÿwÿ P, b � b�uDt , P � � P=2� m�lÿ uDt �.

Fig. 8. Orthogonal projections in space (P, d,uDt ) of the fundamental trajectory of the system of Fig. 7. Note that for Pe PB, u
C
n �

uDn � ÿP=2.
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For the given particular type of loading, we wish to determine the quasistatic paths that may bifurcate

from the fundamental path and to study the dynamic stability of the fundamental equilibrium states. At

some equilibrium state on the fundamental path and for a given load rate, the existence of other

quasistatic paths is studied by determining the kinematically admissible displacement rates and the

admissible reaction rates (4.8) for which the rate form of the equilibrium eqns (2.18) is satis®ed (see

Klarbring, 1990a; Nguyen, 1994). The divergence instability of the equilibrium states is studied with the

theory presented in Section 4 (Proposition 4.4): the e�ective mass and sti�ness matrices (3.28) and (4.23)

are calculated, the linear eigenproblems of the type (4.22) are solved, and the strict inequalities referred

in (iii) of Proposition 4.4 are checked.

Bifurcations from the fundamental path

At a generic equilibrium state �X0, r0� along the fundamental trajectory, the rate form of the

equilibrium equations is

KV � e _P �GTw,

where

V �
�
Vd Vy V C

n V D
n V C

t V D
t

�T2 KV

ÿ
X0, r0

�
,

w �
�
wC
n wD

n wC
t wD

t

�T2 Kw

ÿ
X0, r0, V

�
e � ÿ

ÿ
@2O=@X@P

��X0� � �1 0 0 0 0 0�T

denote the vectors of non-dimensional displacement rates, reaction rates and relative magnitudes of the

generalized applied force rates, respectively; P
.
is the load rate. We consider the following kinds of

equilibrium states, for which the admissible sets of right velocities and right reaction rates are presented.

1. reactions at C and D are strictly inside the friction cone (0E P < PA)

KV

ÿ
X0, r0

�
�
�
V 2 R6: V C

n � V D
n � V C

t � V C
t � 0

	
Kw

ÿ
X0, r0, V

�
� R4;

2. both particles are in a state of impending slip (PAE P < PB)

KV

ÿ
X0, r0

�
�
�
V 2 R6: V C

n � V D
n � 0, V C

t E 0, V D
t e 0

	
Kw

ÿ
X0, r0, V

�
� �

w 2 R4: wC
t � mwC

n E 0,
ÿ
wC
t � mwC

n

�
V C

t � 0

ÿwD
t � mwD

n E 0,
ÿ
ÿ wD

t � mwD
n

�
V D

t � 0
	
;

3. both particles are in a state of geometric contact without reaction �P � PB�

KV

ÿ
X0, r0

�
�
�
V 2 R6: V C

n E 0, V D
t E 0

	
Kw

ÿ
X0, r0, V

�
� �

w 2 R4: wC
n E 0, wC

n V C
n � 0, jwC

t jE ÿ mwC
n

wD
n E 0, wD

t V
D
n � 0, jwD

t jE ÿ mwD
n

	
;

4. both particles are out of contact �P > PB�
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KV

ÿ
X0, r0

�
� R6

Kw

ÿ
X0, r0, V

�
� f0g � R4:

It is convenient to de®ne the three external loads corresponding to the following conditions involving

the quantities a and b:

P � P1 when a � bP holds;

P � P2 when a � bP=2 holds, and

P � P3 when a � 0:

Di�erent kinds of response may occur for di�erent values of the non-dimensional governing parameters.

The bifurcation diagram depends qualitatively on the relative position of the two sets of loads PA, PB and

P1, P2, P3. In this paper we only consider the case for which the governing parameters are such that

PA < P2 < P3 < PB. A complete study of this example can be found in Martins and Costa (1998). In

the case studied here (and for the particular type of loading considered) the only bifurcations from the

fundamental path occur for P 2 �PA, PB�. Table 3 summarizes the relevant information for the quasistatic
evolutions involving rotation of bar AB that branch from the fundamental path. The near future frictional

contact states of the two particles C and D are indicated by the use of the words FREE, SLIP or STICK:

for instance, a near future evolution involving sliding of C and stiction of D is indicated by SLIP±STICK,

whilst STICK±SLIP indicates that C will be stuck and D will be sliding in the near future (the same rule

applies for other combinations of states). Table 3 contains, for each case of near future evolution in the

range P 2 �PA, PB�, the active generalized velocities, the e�ective sti�ness matrices, the conditions on the

data resulting from the constraints in KV�X0, r0� and Kw�X0, r0, V� and the near future (rate) solutions. The
conditions on the data are written in terms of the quantities a and b and also in terms of the loads

P1, P2, P3 (between square brackets).

In Table 3 it can be seen that the fundamental path has bifurcations for a load rate _P > 0 in the

following ranges: �P1, P2�, if P1 > PA; or �PA, P2�, if P1 E PA. If P1 > PA the problem in the ®rst rates

indicates a bifurcation into SLIP±SLIP solutions at P1: the problem in the ®rst rates has in®nitely many

SLIP±SLIP solutions which are represented in Fig. 9 by a fan. For P1e PA there exists a continuous

range of bifurcation points into a STICK±SLIP or a SLIP±STICK solution with _P > 0. The upper load of

this segment is P2. The secondary paths for that load begin with _P � 0 (Fig. 10). For P 2 �P2, P3�, the
bifurcations into STICK±SLIP or SLIP±STICK happen with a load decrease � _P < 0� (Fig. 10). Above P3

and below PB there are no secondary branches from the fundamental path. Table 3 shows only the

STICK±SLIP case because the SLIP±STICK solutions are symmetric of the STICK±SLIP solutions. The

problem in the ®rst rates gives also a STICK±STICK kind of solution with _P < 0 at P3 (see Table 3).

That problem has in®nitely many solutions, i.e., at the point of the fundamental trajectory where a = 0

there is a fan of ®rst rate solutions leading to STICK±STICK frictional contact states (see Fig. 11).

An observation of utmost importance is that when the coe�cient matrix K� is singular or when a ®rst

rate solution gives ambiguous information on the near future state of some contact particle (at least one

inequality in Table 2 does not hold in the strict sense), the ®rst rate solution may not be continued by a

solution of the same type of the original nonlinear problem. The (higher-order) post-buckling analysis that

is needed in these circumstances falls outside the scope of this paper. The above observation is particularly

relevant for the cases in which the ®rst rate problem gives a fan of solutions: in the related problem of the

(associated) Shanley column (Shanley, 1947) the problem in the ®rst rates also gives fans of solutions

(Petryk, 1993) which however cannot all be continued in the post-buckling range (Hutchinson, 1974;

Needleman and Tvergaard, 1982; Bazant and Cedolin, 1991).
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Table 3

Active generalized velocities, e�ective sti�ness matrices, conditions on the data and the solutions of the problem in the ®rst rates

that involve escape from the fundamental trajectory involving rotation of bar AB for P 2 �PA, PB� � a � a�uDt , P � � 4�lÿ uDt �2 ÿ
wÿ P, b � b�uDt , P � � �P=2� � m�lÿ uDt �, uDt � �u hÿ�m=2�� �u vÿ�P=2��
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Fig. 10. Rate solutions leading to STICK±SLIP or SLIP±STICK frictional contact states (case PA < P1 < P2 < P3 < PB).

Fig. 9. Fan of rate solutions leading to SLIP±SLIP frictional contact states (P � P1). The qualitative rate solutions are represented

in the (P, y) space.

Divergence instability of the equilibrium states on the fundamental path

1. 0E P < PA

In this case the eigenproblem (4.22) has the form2
64 l2 � 4 0

0
l2

3
� a

3
75
"
Vd

Vy

#
�
"
0

0

#
:

Since a vanishes only for P � P3 > PA, all the eigenvalues l are pure imaginary: no purely elastic

instability occurs in this load range.
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2. PA E P < PB

For the SLIP±SLIP case the eigenproblem (4.22) becomes

2
66666664

l2 � 4 0 0 0

0
l2

3
� a

P

2

P

2

m b l2m� 1 0

ÿm b 0 l2m� 1

3
77777775

2
666664

Vd

Vy

V C
t

V D
t

3
777775 �

2
666664

0

0

0

0

3
777775

and the characteristic equation is

ÿ
l2 � 4

�ÿ
l2m� 1

���l2
3
� a

�ÿ
l2m� 1

�
ÿ bP

�
� 0:

A su�cient condition for the above equation to have a positive real root is that aÿbP< 0 which is

equivalent to det �K�� < 0 for the K� matrix of the SLIP±SLIP case. However, the eigenvector V

must satisfy V C
t � V D

t , which is not compatible with the assumed orientations of slip for the particles

C and D. Consequently, in this case, the occurrence of divergence instabilities of the type (4.7) is

excluded for the linearized system.

For the STICK±SLIP case the eigenproblem to solve is

2
66664
l2 � 4 0 0

0
l2

3
� a

P

2

ÿm b l2m� 1

3
77775
2
664
Vd

Vy

V D
t

3
775 �

2
664
0

0

0

3
775:

The corresponding characteristic equation is

Fig. 11. Fan of rate solutions leading to a STICK±STICK frictional contact state (P � P3).

J.A.C. Martins, A. Pinto da Costa / International Journal of Solids and Structures 37 (2000) 2519±2564 2555



ÿ
l2 � 4

���l2
3
� a

�ÿ
l2m� 1

�
ÿ b

P

2

�
� 0:

A necessary and su�cient condition for the existence of one positive l is that aÿ b�P=2� < 0 which

is equivalent to det �K�� < 0 for the K� matrix of this STICK±SLIP case. Since aÿ bP=2 > 0 for

P < P2, then divergence instability of the type (4.7) is excluded for the linearized system in the

continuous range of bifurcation points �P1, P2�. Divergence instability for the case STICK±SLIP may

occur for Pe P2: for the actual nonlinear system the equilibrium states of the fundamental trajectory

corresponding to P 2 �P2, PB� are unstable by divergence. These conclusions are also valid for the

SLIP±STICK case.

We explore now the possibility of occurrence of a purely elastic instability, i.e. involving stiction of

both particles C and D. The eigensystem (4.22) is the same presented for the case 0E P < PA. The

reaction rates are obtained from (4.24),

2
666664

wC
n

wD
n

wC
t

wD
t

3
777775 �

2
666666664

ÿ
lÿ uDt

�
Vy

ÿÿlÿ uDt
�
Vy

P

2
Vy

P

2
Vy

3
777777775
,

which would lead to reactions at one of the particles outside the friction cone: a purely elastic

instability for P 2 �PA, PB� is not possible.
3. P � PB

A complete analytical study of the dynamic stability of the fundamental equilibrium state

corresponding to P � PB is not done here because it would involve too lengthy computations. A

numerical study that includes this case is presented below.

4. P > PB

This case reduces to the study of an elastic stability eigenproblem for a 6 degree-of-freedom system

without unilateral contact and friction, with M� �M and K� � K. Since a vanishes for some

P 2 �PA, PB�, then a < 0 for P > PB which implies det �K� < 0 (see Martins and Costa, 1998). Then

the fundamental equilibrium states for P > PB are unstable.

A numerical study

We consider the following non-dimensional parameters: m � 0:2, l � 1:0, �uv � 2:0, �uh � 0:1,

w � 0:2, m � 1. Particles C and D reach the state of impending slip for PA � 2 and, following the

fundamental path, their reactions vanish for PB � 4. For P 2 �PA, P2�� �2, 2:23572� the fundamental

path has a continuous range of bifurcation points to secondary paths with STICK±SLIP and SLIP±

STICK frictional contact states (see Table 3) and increasing load P. For P � P2 � 2:23572, the

bifurcation to the above secondary paths occurs for constant external load. The fundamental

equilibrium states between P2 and PB are unstable by divergence. Since in this example the parameter a

vanishes for P � P3 � 3:29774 2�P2, PB�, then there is a range of external loads �P 2�P3, PB��
corresponding to unstable equilibrium states of the fundamental trajectory for which there are no

branching to non-symmetric quasistatic secondary paths, for the particular type of loading considered

here. The unstable dynamic solutions correspond to STICK±SLIP or SLIP±STICK near future

frictional contact states. For the chosen non-dimensional parameters and for the equilibrium state of
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geometric contact with vanishing reactions �P � PB � 4� there are no secondary quasistatic equilibrium

paths emanating from it, for the particular type of loading considered. Moreover, the equilibrium state

for P � PB � 4 is unstable by divergence with modes involving FREE±SLIP or SLIP±FREE near future

frictional contact states. For P> 4 all the fundamental equilibrium states are unstable since det �K�� <

0 (a pure elastic instability).

5. Summary and conclusions

This paper deals with the instability of equilibrium states of mechanical systems in frictional contact

with rigid obstacles. We consider systems with a ®nite number of degrees-of-freedom, elastic

nonlinearities and curved obstacles. Two types of instabilities are addressed: a non-smooth type

associated with the lack of uniqueness of the accelerations at the equilibrium state, and a smooth type

associated with the non-oscillatory growth of arbitrarily small perturbations to the equilibrium state.

The same types of instability were considered earlier by Martins et al. (1998) but for linear elastic

systems and ¯at obstacles.

The occurrence of a non-smooth instability (with no initial perturbation) depends on the veri®cation

of the following: the necessary conditions for an initial acceleration and reaction discontinuity are

satis®ed (Propositions 3.1 and 3.3), some regularity assumptions hold, as well as some conditions on the

direction of the acceleration and reaction discontinuity (Proposition 3.6).

The study of the smooth divergence instability of a nonlinear system yields an inclusion or variational

inequality eigenproblem (Proposition 4.1) (see also Martins and Costa, 1996; Martins et al., 1998). The

resolution of one such inclusion eigenproblem is equivalent to the resolution of a set of linear

eigenproblems, each of them corresponding to a directional linearization of the original nonlinear

system, together with the veri®cation of some inequalities. For the nonlinear system to be unstable it is

su�cient that: one of the admissible linearizations of the system corresponds to an unstable equilibrium,

some regularity assumptions are valid and some conditions hold on the direction of the displacement

and reaction increments that correspond to the linearized unstable solution (Proposition 4.4).

In the instabilities discussed in the present paper, the conditions posed on the escape directions (the

initial acceleration and reaction discontinuity in Proposition 3.6 and the displacement and reaction

increments in Proposition 4.4) are such that it is possible to guarantee the existence of a smooth near

future solution to the original nonlinear dynamic problem: those directions give an unambiguous

information on that near future evolution, i.e. they point towards the interior of an admissible region of

smooth behavior of the system, and there the e�ective mass matrix of the system is non-singular. The

well-known fact that smooth dynamic solutions to frictional contact problems (continuous velocities,

accelerations and reactions) may fail to exist in general circumstances is the main reason for the above

restrictions on the su�cient conditions given in Propositions 3.6 and 4.4.

Finally we observe that, as a result of the nature of the mathematical tools used in this work, and also in

some relation with the restrictions mentioned above, the main limitation to the instability analyses

discussed in this paper is that they do not consider escape solutions that might involve an in®nite number

of transitions between di�erent frictional contact states in the neighborhood of the equilibrium state.

Appendix A

Proof of Lemma 2.5. First we prove that A 2 KA�X, r, V� implies (2.34). In fact, it is easy to see that

the inequality
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�GA� Äa � � �r 0 ÿ r�e
X
Pcc

ÿ
gt�A� � ~a t

�ÿ
r 0t ÿ rt

�

holds, because r 0n � r 0t � rn � rt � 0 in Pcf , gn�A� � ~an � 0 in Pcc \ �Pd [ Ps�, and because gn�A� �
~an E 0, rn � 0 and r 0n E 0 in Pcc [ Pz. The inequality (2.34) follows then by observing that

in Pv: r 0t ÿ rt � ms
�
gt�V�

�ÿ
r 0n ÿ rn

�
;

in P0 \ Pd: gt�A� � ~a t � 0;

in P0 \ Pz:
ÿ
gt�A� � ~a t

�ÿ
r 0t ÿ rt

� � ÿ
gt�A� � ~a t

�
r 0t e ÿ jgt�A� � ~a tjjr 0t j
e mjgt�A� � ~a tj

ÿ
r 0n ÿ rn

�
;

in P0 \ Ps:
ÿ
gt�A� � ~a t

�ÿ
r 0t ÿ rt

� � ÿjgt�A� � ~a tjs�rt �
ÿ
r 0t ÿ rt

�
e jgt�A� � ~a tj

ÿÿ jr 0t j � jrtj
�
e mjgt�A� � ~a tj

ÿ
r 0n ÿ rn

�
:

We prove now that (2.34) implies A 2 KA�X, r, V�. The proof of the properties of gt�A�� ~a t in P0 \ Pd

is trivial. In order to prove that gn�A�� ~an E 0 and �gn�A�� ~an�rn � 0 in Pv, we let r
0
nÿrn � r 0t ÿrt � 0 for

all particles di�erent from some particle p in that set. For that particle we get from (2.24) and (2.34)

rn E 0, rt � mrns
�
gt�V�

�
,

and ÿ
gt�A� � ~a t

�ÿ
r 0t ÿ rt

�� ÿ
gn�A� � ~an

�ÿ
r 0n ÿ rn

�
e ms

�
gt�V�

�ÿ
gt�A� � ~a t

�ÿ
r 0n ÿ rn

�
,

for all �r 0n, r 0t � such that r 0n E 0 and r 0t � mr 0ns�gt�V��. Consequently,ÿ
gn�A� � ~an

�ÿ
r 0n ÿ rn

�
e 0, for all r 0nE 0,

which implies the desired result. In order to prove the same result �gn�A�� ~anE 0 and �gn�A�� ~an�rn � 0�
in P0, we let r 0n ÿ rn � r 0t ÿ rt � 0 for all particles di�erent from some particle p in that set. For that

particle we get from (2.24) and (2.34)

rn E 0, jrtjE ÿ mrn,

and ÿ
gt�A� � ~a t

�ÿ
r 0t ÿ rt

�� ÿ
gn�A� � ~an

�ÿ
r 0n ÿ rn

�
e mjgt�A� � ~a tj

ÿ
r 0n ÿ rn

�
,

for all �r 0n, r 0t � such that r 0n E 0 and jr 0t jE ÿ mr 0n. Consequently, we have againÿ
gn�A� � ~an

�ÿ
r 0n ÿ rn

�
e mjgt�A� � ~a tj

ÿ
r 0n ÿ rn

�ÿ ÿ
gt�A� � ~a t

�ÿ
r 0t ÿ rt

�
e mjgt�A� � ~a tj

ÿ
r 0n ÿ rn

�ÿ ÿ
gt�A� � ~a t

�
r 0t � mjgt�A� � ~a tjrn

� mjgt�A� � ~a tjr 0n ÿ
ÿ
gt�A� � ~a t

�
r 0t

� 0, for all r 0nE 0,

because either gt�A� � ~a t � 0 or gt�A� � ~a t 6� 0 and, for each r 0nE 0, r 0t can be chosen with the value r 0t �
ms�gt�A� � ~a t�r 0n, for which jms�gt�A� � ~a t�r 0nj � jr 0t jE ÿ mr 0n. Finally, the proof that gt�A� � ~a t�ÿjgt�A� �
~a tjs�rt� in P0 \ Ps is done by letting r 0n ÿ rn � r 0t ÿ rt � 0 in (2.34) for all particles, except for r 0t ÿ rt of
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some particle p in P0 \ Ps. For that particle we get from (2.34)ÿ
gt�A� � ~a t

�ÿ
r 0t ÿ rt

� � ÿ
gt�A� � ~a t

�
s�rt �

ÿ
s�rt �r 0t ÿ jrtj

�
e 0,

for all r 0t such that [cf. (2.24)] jr 0t jE ÿ mr 0n �ÿmrn � jrtj. The desired result follows from the fact that

s�rt�r 0t ÿjr 0t jE jrtj ÿ jrtjE 0. q

Appendix B

Mathematical details of the Proof of Proposition 4.4. The only combinations of near future states that

are relevant for the study of the instability of the nonlinear system are those corresponding to the

instability of the linearized system, i.e. those that satisfy the assumptions (ii) and (iii) of Proposition 4.4.

In the sequel, we use for the reaction vector r and for the kinematic matrix G the same partitions that

are indicated in (3.18). In other words, a solution of the nonlinear system (3.19) and (3.20) is sought

such that the conditions in Table 1, with gt�A� replaced by gt�V�, hold (compare also with Table 2 and

recall the related nomenclature).

Since, by assumption (iv), the matrix ÃGM
ÿ1 ÃG

T

m is regular in the neighborhood of the equilibrium

position, then, in the admissible region of smooth behavior determined by the vectors V and w in (4.11)

and (4.13), the nonlinear equations of motion (2.13) can be written as a system of 2N ®rst-order

ordinary di�erential equations on y�t� � �yT1 �t� yT2 �t� �T���X�t� ÿ X0�T ÇXT�t��T"
Çy1�t�
Çy2�t�

#
�
"

y2�t�
ÿMÿ1 ÅB

ÿ
y1�t�, y2�t�

�
#
, �B:1�

while the inequalities in columns III and IV of Table 1 hold in the strict sense (with gt�A� replaced by

gt�V�). ÅB is given by (3.32) and the reactions are obtained by

r�t� � Hm Ãr �t� � Hm

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1�
ÃGM

ÿ1
Bÿ ÃÇG y2

�
: �B:2�

On the other hand, the linearization (4.3) of the equations of motion in the same admissible region, i.e.

the linearized form of (B.1), can be written as an homogeneous system of 2N ®rst-order ordinary

di�erential equations

Çy�t� � Ay�t�, �B:3�
where

A �

2
64 0 I

Mÿ1
�
ÃG
T

m

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1
ÃGM

ÿ1 ÿ I

�
K 0

3
75
�X0 �

�B:4�

and the corresponding reaction increments dr�t� are given by

dr�t� � Hm

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1
ÃGM

ÿ1
Ky1�t�: �B:5�

The nonlinear system (B.1) may be written in the equivalent forms
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Çy�t� � Ay�t� � Y
ÿ
y�t�� 2 R2N, te t, �B:6�

or

Çz�t� � Jz�t� � Z�z�t�� 2 R2N, te t, �B:7�

where A is the constant 2N� 2N real matrix in (4.32), J is the real Jordan decomposition of matrix

A, Y�0��Z�0�� 0, Z�z��Sÿ1Y�y� and y = Sz, with S a regular transformation matrix with real entries.

Moreover, Y(y) and Z(z) are bounded and at least locally Lipschitz continuous in the neighborhood of

y = 0 or z = 0, due to the general assumption (4.1). In addition,

lim
kyk40

kY�y�k
kyk � lim

kzk40

kZ�z�k
kzk � 0: �B:8�

In the present case the real Jordan decomposition of A has the form

J �

2
666664

l 0 0 . . . 0

0 ÿl 0 . . . 0

0 0 C�l3�
0 0 C�lI�

3
777775,

where I denotes the total number of independent eigenvectors of A and, for ie 3,

C�li � �

2
66666666666664

0 Im �li � . . .

ÿIm �li � 0 . . .

g 0 0 Im �li � . . .

0 g ÿIm �li� 0

g 0 0 Im�li � . . .

0 g ÿIm�gi � 0 . . .

. . . . . .

3
77777777777775
:

The elements g may be taken as strictly positive and their magnitude can be controlled by an adequate

choice of the transformation matrix S (Horn and Johnson, 1985; Coddington and Levinson, 1955;

Cronin, 1980; LuÈ tkepohl, 1996). The system (B.7) is of the type

_z1�t� � lz1�t� � Z1�z�t��

_z2�t� � ÿlz2�t� � Z2�z�t��

_z2k�1�t� � Im �lk�2 �z2k�1�t� � g2k�1z2kÿ1�t� � Z2k�1�z�t��

_z2k�2�t� � ÿIm �lk�2�z2k�2�t� � g2k�2z2k�t� � Z2k�2�z�t��

where g2k�1 and g2k�2 are 0 or g > 0, and the index k � 1, . . . , Nÿ 1 is not summed. The essence of the

proof lies in the time di�erentiation of a weighted sum of the quantities
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R2�t� � jz1�t�j2, r2�t� �
X2N
i�2

jzi�t�j2

in the neighborhood of the trivial solution (Amann, 1990; Coddington and Levinson, 1955; Cronin,

1980; Verhulst, 1980). From (B.8) we have that

8e > 0 9d > 0: 8i � 1, . . . , 2N: kzk < d�) jZi�z�jE ejzij: �B:9�
For b2 > 0, it follows from (B.9) that the following inequality holds:

8e > 0 9d > 0: kz�t�k < d �) 1

2

d

dt
�R2 ÿ b2r2��t�e �lÿ gÿ e�jz1�t�j2 ÿ b2�g� e�

X2N
i�2

jzi�t�j2:

Choosing g and e such that g� e 2 �0, l=2�, then

9d > 0: kz�t�k < d �) 1

2

d

dt
�R2 ÿ b2r2 ��t�e �g� e��R2 ÿ b2r2��t�:

For b> 0 and for a�t� su�ciently small, there is always an a2 > 0 such that, for the initial conditions

(4.28), �R2 ÿ b2r2��t� � a2. Let yL�t� � a�t��V, lV� be the initial perturbation to the linearized system

along the direction �V, lV� in the phase space associated with the positive eigenvalue l > 0, and let

yw�t� � �Xw, Vw� be the correction to yL�t� due to the curvature of the obstacle. From (4.28)

kyw�t�kE Ca�t�2kV, lVk2 and, since z � Sÿ1y, then jzwi�t�jE C 0a�t�2 for i � 1, . . . ,2N and some C 0 > 0.

Note that the only non-vanishing component of zL�t� is the one related with l, i.e. zL1�t�. Using the

above estimates and letting z�t� � zL�t� � zw�t�, the condition �R2 ÿ b2r2��t� > 0 is satis®ed if

a2�t�
ÿ
1ÿ C1a�t� ÿ b2C2a

2�t�
�
> 0,

where C1 and C2 are positive constants that depend on the matrix S. The above inequality is satis®ed

for a�t� < �ÿC1��C 2
1�4b2C2�1=2�=�2b2C2�.

Taking initial conditions z�t� � Sÿ1y�t� such that kz�t�k < d and �R2 ÿ b2r2��t� � a2 > 0, we get, by

Gronwall's inequality (Amann, 1990),

kz�t�k < d�)�R2 ÿ b2r2��t�e �R2 ÿ b2r2��t� exp �2�g� e��tÿ t��e �R2 ÿ b2r2��t�: �B:10�

From (B.10) and from the fact that

kz�t�k2 �
ÿ
R2 � r2

�
�t�e �R2 ÿ b2r2 ��t�, �B:11�

we conclude that the solution z�t� leaves the neighborhood d of the trivial solution, no matter how small

the perturbation z�t� is.
Besides, from (B.10) and (B.11) we may extract additional information on the evolution of the

perturbed solutions. Notice that

�R2 ÿ b2r2 ��t� > 0 �B:12�
is equivalent to

z � z <

�
1� 1

b2

�
�z � ez�2, �B:13�

where ez��1, 0, . . . , 0� � Sÿ1yL�t�=kSÿ1yL�t�k de®nes the direction in the z phase space that corresponds
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to the eigenvector of the coe�cient matrix of the linearized system associated with the positive

eigenvalue l > 0. By means of the transformation z � Sÿ1y, the inequality (B.13) also corresponds to the

interior of a convex cone that encloses yL�t� � a�t��V, lV� in the y phase space:

SÿTSÿ1y � y <

�
1� 1

b2

��
SÿTSÿ1y � ey

�2
�B:14�

where ey � Sez has length one in the norm induced by SÿTSÿ1. The nature of the spectrum of A (recall

assumption (ii) in Proposition 4.4) guarantees that this cone does not contain any eigenvector associated

with any other eigenvalue with positive real part. The aperture of the cones de®ned by (B.13) and (B.14)

decreases when larger values of b2 are considered. Moreover,

�R2 ÿ b2r2 ��t�e �R2 ÿ b2r2��t� � a2 �B:15�

de®nes escape regions in the interior of those cones. The regions mentioned above have a

simple representation in the (R, r ) space (see Fig. 12). Region E is bounded by the hyperbola

�R2 ÿ b2r2��t� � a2 which is interior to the conic region de®ned by �R2 ÿ b2r2��t�e 0. According to

(B.10) and (B.11) it is clear that every solution to the system (B.1) with an initial condition

simultaneously inside the d-neighborhood of the trivial solution z�t� � 0 and inside the region E will

leave the d-neighborhood before leaving the region E. Since matrix S represents a non-singular linear

and real transformation between y and z, what was said about the qualitative evolution of the solutions

in terms of the z coordinates can be easily adapted with minor changes to the y coordinates (the actual

phase-space coordinates). The d-neighborhood of z�t� � 0 corresponds also to a (convex) neighborhood

U of y�t� � 0 (Hadley, 1980). By choosing d and a�t� su�ciently small and a su�ciently large b2, the

apertures of (B.13) and (B.14) are small enough that �X�t�, ÇX �t�� remains in the interior of the admissible

region of smooth behavior of the system before crossing the border of U.

To conclude the proof of instability of the system we need to show that the reactions also remain in

the interior of the corresponding admissible region of smooth behavior while the phase space trajectory

is inside the neighborhood U. If we denote rrr � �rÿ r0, Çr � where r is given by (B.2) and Çr can be

Fig. 12. Qualitative evolution in the space (R, r ) of the representative point of a solution of (B.7) (or (B.6)) for a perturbation

from equilibrium state given by (4.28).
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computed by di�erentiating (B.2) and using (B.1), we may write

rrr � LSz� F�z� �B:16�

where

L �

2
664Hm

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1
ÃGM

ÿ1
K 0

0 Hm

�
ÃGM

ÿ1 ÃG
T

m

�ÿ1
ÃGM

ÿ1
K

3
775:

The mapping LS of the linear part of (B.16) leads to a cone in the rrr space that encloses �w, lw�, where
w is the reaction rate vector of the linearized system corresponding to the positive real eigenvalue l.

Considering the linear part of (B.16) we have z � �LS�Irrr, where �LS�I: Rg�LS�4 �Ker�LS��? �Rg��LS�T�
represents a right inverse of LS (Lancaster and Tismenetsky, 1985). Then we get from (B.13) that

ÿ
�LS�I

�T�LS�Irrr � rrr <

�
1� 1

b2

��ÿ
�LS�I

�T�LS�Irrr � er
�2
, �B:17�

where errr � LSez is the unit vector along the direction of �w, lw� (for the norm induced in Rg�LS�) by
��LS�I�T�LS�I�. The previous inequality de®nes a cone enclosing er. The inner product induced by

��LS�I�T�LS�I in Rg�LS� is used in (B.17). Notice that ��LS�I�T�LS�Irrr � rrr � z � ze 0 for every r 2 Rg�LS�
and that 0 � ��LS�I�T�LS�Irrr � rrr � z � z implies 0 � z 2 �Ker�LS��? and rrr � LSz � 0. Due to the presence

of higher-order terms F�z� in (B.16), the image in the rrr space of the phase space cones (B.13) and (B.14)

is not the cone (B.17) but it di�ers from (B.17) by second-order terms. By choosing d and a�t�
su�ciently small and b2 su�ciently large, then for z in the d-neighborhood, the region in the r space

approximated by (B.17) will be strictly inside the admissible region of smooth behavior of the system. In

other words, while the variables of the y phase space are in the neighborhood U, the strict inequalities

in columns III and IV of Table 1 (with gt�A� replaced by gt�V�) hold. This shows the validity of the

equations of motion of the system at least until it leaves the neighborhood U of equilibrium.
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